scholarly journals Evidence for Microbial Fe(III) Reduction in Anoxic, Mining-Impacted Lake Sediments (Lake Coeur d'Alene, Idaho)

2000 ◽  
Vol 66 (1) ◽  
pp. 154-162 ◽  
Author(s):  
David E. Cummings ◽  
Anthony W. March ◽  
Benjamin Bostick ◽  
Stefan Spring ◽  
Frank Caccavo ◽  
...  

ABSTRACT Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg−1, suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter−1) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe3O4), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg−1. Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 × 105 cells g (dry weight) of sediment−1. Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined.

2001 ◽  
Vol 67 (7) ◽  
pp. 3168-3173 ◽  
Author(s):  
Linping Kuai ◽  
Arjun A. Nair ◽  
Martin F. Polz

ABSTRACT A rapid and simple most-probable-number (MPN) procedure for the enumeration of dissimilatory arsenic-reducing bacteria (DARB) is presented. The method is based on the specific detection of arsenite, the end product of anaerobic arsenate respiration, by a precipitation reaction with sulfide. After 4 weeks of incubation, the medium for the MPN method is acidified to pH 6 and sulfide is added to a final concentration of about 1 mM. The brightly yellow arsenic trisulfide precipitates immediately and can easily be scored at arsenite concentrations as low as 0.05 mM. Abiotic reduction of arsenate upon sulfide addition, which could yield false positives, apparently produces a soluble As-S intermediate, which does not precipitate until about 1 h after sulfide addition. Using the new MPN method, population estimates of pure cultures of DARB were similar to direct cell counts. MPNs of environmental water and sediment samples yielded DARB numbers between 101 and 105 cells per ml or gram (dry weight), respectively. Poisoned and sterilized controls showed that potential abiotic reductants in environmental samples did not interfere with the MPN estimates. A major advantage is that the assay can be easily scaled to a microtiter plate format, enabling analysis of large numbers of samples by use of multichannel pipettors. Overall, the MPN method provides a rapid and simple means for estimating population sizes of DARB, a diverse group of organisms for which no comprehensive molecular markers have been developed yet.


2021 ◽  
Vol 26 (1) ◽  
pp. 1-16
Author(s):  
Julian Esteban Másmela-Mendoza ◽  
Luz Marina Lizarazo Forero

The objective of study was to isolate and determine the identity of denitrifying bacteria from limnetic areas of Lake Tota (Colombian Andes) with and without rainbow trout production activities. We examined the relationships between the lake’s physicochemical factors (oxygen, nitrogen, and phosphorus content) and two bacterial communities (denitrifying bacteria and coliforms). Water samples were taken 20m below the surface from July to September at five limnetic zones; two of which were close to rainbow trout farming areas. In each zone, the concentrations of oxygen, nitrogen, and phosphorus were measured. To identify and quantify the abundance of bacteria, the most probable number (MPN) technique was used, employing minimal medium for denitrifying bacteria and medium for nitrate reducing bacteria (NRB). A greater number of denitrifying bacteria were found in the fish farming zones, identifying bacteria of the genera Bacillus, Pseudomonas, Nocardia, and Streptomyces. The number of nitrate-reducing bacteria revealed statistically significant differences throughout the sampling period, increasing from July to September and was related to a decrease in precipitation. The density of NRB and total phosphorus were directly correlated. High bacterial densities of denitrifyingbacteria and coliforms are indicative of changes from oligotrophic to eutrophic states in the studied limnetic areas.


1999 ◽  
Vol 65 (11) ◽  
pp. 5042-5049 ◽  
Author(s):  
Kuk-Jeong Chin ◽  
Dittmar Hahn ◽  
Ulf Hengstmann ◽  
Werner Liesack ◽  
Peter H. Janssen

ABSTRACT Most-probable-number (liquid serial dilution culture) counts were obtained for polysaccharolytic and saccharolytic fermenting bacteria in the anoxic bulk soil of flooded microcosms containing rice plants. The highest viable counts (up to 2.5 × 108 cells per g [dry weight] of soil) were obtained by using xylan, pectin, or a mixture of seven mono- and disaccharides as the growth substrate. The total cell count for the soil, as determined by using 4′,6-diamidino-2-phenylindole staining, was 4.8 × 108cells per g (dry weight) of soil. The nine strains isolated from the terminal positive tubes in counting experiments which yielded culturable populations that were equivalent to about 5% or more of the total microscopic count population belonged to the divisionVerrucomicrobia, theCytophaga-Flavobacterium-Bacteroides division, clostridial cluster XIVa, clostridial cluster IX, Bacillus spp., and the class Actinobacteria. Isolates originating from the terminal positive tubes of liquid dilution series can be expected to be representatives of species whose populations in the soil are large. None of the isolates had 16S rRNA gene sequences identical to 16S rRNA gene sequences of previously described species for which data are available. Eight of the nine strains isolated fermented sugars to acetate and propionate (and some also fermented sugars to succinate). The closest relatives of these strains (except for the two strains of actinobacteria) were as-yet-uncultivated bacteria detected in the same soil sample by cloning PCR-amplified 16S rRNA genes (U. Hengstmann, K.-J. Chin, P. H. Janssen, and W. Liesack, Appl. Environ. Microbiol. 65:5050–5058, 1999). Twelve other isolates, which originated from most-probable-number counting series indicating that the culturable populations were smaller, were less closely related to cloned 16S rRNA genes.


2005 ◽  
Vol 51 (8) ◽  
pp. 725-729 ◽  
Author(s):  
Ruth E Eckford ◽  
Phillip M Fedorak

A most probable number (MPN) method was used to enumerate dissimilatory ammonium-producing, nitrate-reducing bacteria (DAP-NRB) in oil field waters and to determine whether they were stimulated by nitrate addition used to control hydrogen sulfide production. An ammonium production medium with 5 carbon and energy sources (acetate, glucose, glycerol, pyruvate, and succinate) and nitrate was used in a 3-tube MPN procedure to enumerate DAP-NRB. These bacteria were detected in 12 of 18 oil field water samples, but they were seldom detected in wellhead samples. Three oil field water samples were amended with nitrate in serum bottles and the numbers of different NRB were determined over a 38-day incubation time. This amendment stimulated increases in the numbers of heterotrophic NRB and autotrophic nitrate-reducing, sulfide-oxidizing bacteria, but DAP-NRB remained a minor portion of these communities. Overall, DAP-NRB were present in many of the oil field waters that were examined but their numbers were low. It appears that DAP-NRB would play a minor role in the consumption of nitrate injected into oil field waters for the control of hydrogen sulfide production.Key words: heterotroph, nitrate-reducing bacteria, dissimilatory nitrate reduction, ammonium, petroleum.


1974 ◽  
Vol 20 (11) ◽  
pp. 1487-1492 ◽  
Author(s):  
Q. D. Skinner ◽  
J. C. Adams ◽  
P. A. Rechard ◽  
A. A. Beetle

Nitrate-reducing bacteria, sulfate-reducing bacteria, fluorescent bacteria, and the total viable count were enumerated in three stream systems within a high mountain watershed over a period of two winters and two summers from 1970 to 1972. Spread plate and most probable number procedures showed that the number of fluorescent bacteria, sulfate-reducing bacteria, nitrate-reducing bacteria, and the total count were generally constant throughout the year at the lowest sampling site on the stream systems. However, in some cases and for short periods of time, the numbers of these bacteria appeared to be influenced by recreational use of the land and stream flow. For example, denitrifying bacteria increased in number during the winter recreational period and gave the lowest counts in July.


2007 ◽  
Vol 20-21 ◽  
pp. 481-484 ◽  
Author(s):  
Dagmar Kock ◽  
Torsten Graupner ◽  
Dieter Rammlmair ◽  
Axel Schippers

Cemented layers predominantly consisting of gels/poorly crystalline mineral phases have been formed as a consequence of mineral weathering in sulfidic tailings near Freiberg, Saxony, Germany. These layers function as natural attenuation barrier for toxic compounds and reduce oxidation and erosion processes of tailings surfaces. Quantitative molecular biological and cultivation methods were applied to investigate the role of microorganisms for mineral weathering and cemented layer formation. High resolution depth profiles of numbers of microorganisms showed maximal cell numbers in the oxidation zone where cemented layers had been formed. Highest total cell numbers of >109 cells g-1 dry weight (dw) were detected by SybrGreen direct counting. Using quantitative real-time PCR (Q-PCR) between 107 and 109 Bacteria g-1 dw and up to 108 Archaea g-1 dw were determined. As well high numbers of cultivable and living Bacteria could be detected by MPN (most probable number) for Fe(II)- and S-oxidizers and CARD-FISH (catalyzed reporter deposition - fluorescence in situ hybridization). Overall, the high numbers of microorganisms determined with various quantification techniques argue for a significant role of microorganisms in cemented layer formation due to microbial mineral weathering. It is hypothesized that EPS (extracellular polymeric substances) mediate the formation of secondary mineral phases.


Sign in / Sign up

Export Citation Format

Share Document