scholarly journals Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites

2002 ◽  
Vol 68 (12) ◽  
pp. 6162-6171 ◽  
Author(s):  
Nicholas V. Coleman ◽  
Timothy E. Mattes ◽  
James M. Gossett ◽  
Jim C. Spain

ABSTRACT Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day−1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day−1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks ) values for VC were between 0.5 and 3.2 μM, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC.

2002 ◽  
Vol 68 (6) ◽  
pp. 2726-2730 ◽  
Author(s):  
Nicholas V. Coleman ◽  
Timothy E. Mattes ◽  
James M. Gossett ◽  
Jim C. Spain

ABSTRACT An aerobic bacterium capable of growth on cis-dichloroethene (cDCE) as a sole carbon and energy source was isolated by enrichment culture. The 16S ribosomal DNA sequence of the isolate (strain JS666) had 97.9% identity to the sequence from Polaromonas vacuolata, indicating that the isolate was a β-proteobacterium. At 20°C, strain JS666 grew on cDCE with a minimum doubling time of 73 ± 7 h and a growth yield of 6.1 g of protein/mol of cDCE. Chloride analysis indicated that complete dechlorination of cDCE occurred during growth. The half-velocity constant for cDCE transformation was 1.6 ± 0.2 μM, and the maximum specific substrate utilization rate ranged from 12.6 to 16.8 nmol/min/mg of protein. Resting cells grown on cDCE could transform cDCE, ethene, vinyl chloride, trans-dichloroethene, trichloroethene, and 1,2-dichloroethane. Epoxyethane was produced from ethene by cDCE-grown cells, suggesting that an epoxidation reaction is the first step in cDCE degradation.


2011 ◽  
Vol 64 (9) ◽  
pp. 1796-1803 ◽  
Author(s):  
He-Ping Zhao ◽  
Kathrin R. Schmidt ◽  
Svenja Lohner ◽  
Andreas Tiehm

Degradation of the lower chlorinated ethenes is crucial to the application of natural attenuation or in situ bioremediation on chlorinated ethene contaminated sites. Recently, within mixtures of several chloroethenes as they can occur in contaminated groundwater inhibiting effects on aerobic chloroethene degradation have been shown. The current study demonstrated that metabolic vinyl chloride (VC) degradation by an enrichment culture originating from groundwater was not affected by an equimolar concentration (50 μM) of cis-1,2-dichloroethene (cDCE). Only cDCE concentrations at a ratio of 2.4:1 (initial cDCE to VC concentration) caused minor inhibition of VC degradation. Furthermore, the degradation of VC was not affected by the presence of trans-1,2-dichloroethene (tDCE), 1,1-dichloroethene (1,1-DCE), trichloroethene (TCE), and tetrachloroethene (PCE) in equimolar concentrations (50 μM). Only cDCE and tDCE were cometabolically degraded in small amounts. The VC-degrading culture demonstrated a broad pH tolerance from 5 to 9 with an optimum between 6 and 7. Results also showed that the culture could degrade VC concentrations up to 1,800 μM (110 mg/L).


1987 ◽  
Vol 19 (1-2) ◽  
pp. 299-300 ◽  
Author(s):  
C. Y. Lin ◽  
T. Noike ◽  
K. Sato ◽  
J. Matsumoto

Experiments using high concentration of the major intermediates of anaerobic digestion were conducted with anaerobic chemostat-type reactors to investigate the temperature characteristics of the methanogenesis process. Temperature ranging from 15°C to 50°C were studied. The optimum temperature was 35°C. The methane production was temperature and loading rate dependent. Bacilli were the predominant microbial species and this predominance was independent of digestion temperature. At the mesophilic range, with increasing temperature the saturation constant (Ks) decreased, while the maximum specific substrate utilization rate (vmax) and growth yield (Yg) increased. Their temperature characteristics were described using exponential expressions. For retention times longer than 8 days, the process progressed normally and satisfactorily even at 25°C, and the substrate removal efficiency was more than 96% which was the same as that at 35°C. At the temperature range of 25°C to 35°C, the simulation model is


2003 ◽  
Vol 69 (2) ◽  
pp. 953-959 ◽  
Author(s):  
Alison M. Cupples ◽  
Alfred M. Spormann ◽  
Perry L. McCarty

ABSTRACT A competitive PCR (cPCR) assay targeting 16S ribosomal DNA was developed to enumerate growth of a Dehalococcoides-like microorganism, bacterium VS, from a mixed culture catalyzing the reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), with hydrogen being used as an electron donor. The growth of bacterium VS was found to be coupled to the dehalogenation of VC and cDCE, suggesting unique metabolic capabilities. The average growth yield was (5.2 ± 1.5) × 108 copies of the 16S rRNA gene/μmol of Cl− (number of samples, 10), with VC being used as the electron acceptor and hydrogen as the electron donor. The maximum VC utilization rate (q̂) was determined to be 7.8 × 10−10 μmol of Cl− (copy−1 day−1), indicating a maximum growth rate of 0.4 day−1. These average growth yield and q̂ values agree well with values found previously for dechlorinating cultures. Decay coefficients were determined with growth (0.05 day−1) and no-growth (0.09 day−1) conditions. An important limitation of this cPCR assay was its inability to discriminate between active and inactive cells. This is an essential consideration for kinetic studies.


2014 ◽  
pp. 863-915 ◽  
Author(s):  
HANADI S. RIFAI ◽  
CHARLES J. NEWELL ◽  
TODD H. WIEDEMEIER

2001 ◽  
Vol 43 (5) ◽  
pp. 333-340 ◽  
Author(s):  
D. L. Freedman ◽  
A. S. Danko ◽  
M. F. Verce

Intrinsic biodegradation of trichloroethene and 1,1,1-trichloroethane in groundwater at a Superfund site in California has been observed. An anaerobic zone exists in the area closest to the source location, yielding the expected complement of reductive dechlorination daughter products, including cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Significant levels of methane and ethene were also generated in the anaerobic zone. The groundwater returns to aerobic conditions downgradient of the source, with methane, ethene, VC, and several other compounds still present. Attenuation of VC in the aerobic zone suggests that it is being biodegraded. In this study microcosms were used to evaluate the role of methane and ethene as primary substrates for aerobic biodegradation of VC. Biodegradation of VC was fastest in the bottles containing ethene, with 40 μmol of VC consumed over a 150 day period, compared to approximately 15–20 μmol with methane or a mixture of methane and ethene. VC did not noticeably inhibit ethene biodegradation but did slow the rate of methane use. Methane inhibited ethene metabolism, which apparently caused a reduction in VC biodegradation when methane was present with ethene. These results suggest that ethene plays an important role during in situ natural attenuation of VC under aerobic conditions. Microcosms were also set up with VC alone. Following a 75 day lag period, VC consumption began and subsequent additions were consumed without a lag, suggesting the presence of organisms capable of using VC as a growth substrate. After providing VC alone for nearly 400 days, aliquots of the enrichment culture were used to evaluate its ability to biodegrade cis- and trans-DCE. Both compounds were readily consumed, although addition of VC as the primary substrate was needed to sustain biodegradation of repeated additions. This result suggests that organisms capable of using VC as a sole substrate may play an active role in aerobic natural attenuation of DCEs.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 487 ◽  
Author(s):  
Aristeidis Nivorlis ◽  
Torleif Dahlin ◽  
Matteo Rossi ◽  
Nikolas Höglund ◽  
Charlotte Sparrenbom

Soil contamination is a widespread problem and action needs to be taken in order to prevent damage to the groundwater and the life around the contaminated sites. In Sweden, it is estimated that more than 80,000 sites are potentially contaminated, and therefore, there is a demand for investigations and further treatment of the soil. In this paper, we present the results from a methodology applied in a site contaminated with chlorinated solvents, for characterization of the contamination in order to plan the remediation and to follow-up the initial step of in-situ remediation in an efficient way. We utilized the results from three different methods; membrane interface probe for direct measurement of the contaminant concentrations; seismic refraction tomography for investigating the depth to the bedrock interface; and direct current resistivity and time-domain induced polarization tomography to acquire a high-resolution imaging of the electrical properties of the subsurface. The results indicate that our methodology is very promising in terms of site characterization, and furthermore, has great potential for real-time geophysical monitoring of contaminated sites in the future.


2020 ◽  
Vol 185 ◽  
pp. 109457 ◽  
Author(s):  
Decai Jin ◽  
Fengsong Zhang ◽  
Yi Shi ◽  
Xiao Kong ◽  
Yunfeng Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document