scholarly journals Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe

2003 ◽  
Vol 69 (5) ◽  
pp. 2816-2824 ◽  
Author(s):  
Fritz Oehl ◽  
Ewald Sieverding ◽  
Kurt Ineichen ◽  
Paul Mäder ◽  
Thomas Boller ◽  
...  

ABSTRACT The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.

Heliyon ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. e00936 ◽  
Author(s):  
Boubacar A. Kountche ◽  
Mara Novero ◽  
Muhammad Jamil ◽  
Tadao Asami ◽  
Paola Bonfante ◽  
...  

2019 ◽  
Vol 269 ◽  
pp. 174-182 ◽  
Author(s):  
Valeria Soledad Faggioli ◽  
Marta Noemí Cabello ◽  
Gabriel Grilli ◽  
Martti Vasar ◽  
Fernanda Covacevich ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Asri Subkhan Mahulette ◽  
Anggra Alfian ◽  
ABDUL KARIM KILKODA ◽  
IMELDA JEANETTE LAWALATA ◽  
DESSY ARIYANI MARASABESSY ◽  
...  

Abstract. Mahulette AS, Alfian A, Kilkoda KA, Lawalata IJ, Marasabessy DA, Tanasale VL, Makaruku MH. 2021. Isolation and identification of indigenous Arbuscular Mycorrhizal Fungi (AMF) of forest clove rhizosphere from Maluku, Indonesia. Biodiversitas 22: 3613-3619. Forest clove is classified as wild-type and endemic to the Maluku (Moluccas) Islands, Indonesia. The different condition of growing areas causes various types of Arbuscular Mycorrhizal Fungi (AMF) associated with forest clove. The study aimed to identify and obtain indigenous AMF inoculums from the forest clove rhizosphere from two distribution areas in Maluku. The results of AMF identification found two types of spores from the genus Glomus in the rhizosphere of forest cloves from Ambon Island with a spore density of 35/50 g of soil. In comparison, three spores were found in Seram Island, two from the genus Scutellospora and one from the Acaulospora. With an overall spore density of 5/50 g of soil. After culture trapping, there was a change in type and an increase in spore density in soil samples from the rhizosphere of the two forest clove distribution areas. Soil samples from Ambon after trapping culture obtained two new types of spores from the genus Acaulospora with a total spore number of 57/50 g soil while in soil samples from Seram found three new types of spores from the genus Glomus with a total spore count of 104/50 g of soil.


2016 ◽  
Vol 8 (1) ◽  
pp. 72
Author(s):  
FREDIS ESPITIA D ◽  
ALEXANDER PEREZ C

The present study evaluated the diversity of arbuscular mycorrhizal fungi (AMF) associated soils from three ecosystems grown with pasture colosoana in three localities of the Department of Sucre, Colombia. Soil samples were collected, AMF spores isolated, count of spore was made and morphotypes isolated were classification at the level of species or genera. We found that the genus of AMF over prevailing in native and compacted soils in the three selected municipalities is the genus Glomus, followed by other genera to a lesser extent. In general the soils that presented greater wealth of genres of HMA were those of the municipality of San Marcos, while the lowest richness was found in the municipality of Sincelejo.


Author(s):  
V.P. Soniya ◽  
P.S. Bhindhu

Background: Magnesium deficiency has become a major nutritional disorder in lateritic soils of Kerala. Appropriate magnesium fertilization is the best strategy to combat deficiency issues. Apart from correcting nutritional deficiency, magnesium fertilization has an influence on the growth of beneficial microbes such as nitrogen fixing bacterias and arbuscular mycorrhizal fungi. The experiment aimed to investigate the effect of magnesium fertilization on crop yield and population rhizosphere micoflora of cowpea in lateritic soils of Kerala.Methods: A pot culture experiment was conducted with a gradient of magnesium additions ranging from 5 mg kg-1 to 80 mg kg-1 of soil along with recommended dose of fertilizers. Population of rhizobium, free living nitrogen fixing bacteria, spore count of arbuscular mycorrhizal fungi and per cent root colonization of arbuscular mycorrhizal fungi were studied during flowering. The available magnesium and magnesium uptake were also worked out during harvest. Yield and yield contributing characteristics of cowpea were measured during harvest stage.Result: Magnesium addition produced significant variations in population of rhizobium and free- living nitrogen fixing bacteria whereas spore count of AMF and per cent root colonization of AMF did not vary according to the added doses of magnesium. A higher population of rhizobium, free living nitrogen fixers, root nodules, magnesium uptake, plant height and yield were obtained in the treatment where magnesium was applied @ 10 mg kg-1 soil.


Sign in / Sign up

Export Citation Format

Share Document