scholarly journals Oligonucleotide Probes That Detect Quantitatively Significant Groups of Butyrate-Producing Bacteria in Human Feces

2003 ◽  
Vol 69 (7) ◽  
pp. 4320-4324 ◽  
Author(s):  
Georgina L. Hold ◽  
Andreas Schwiertz ◽  
Rustam I. Aminov ◽  
Michael Blaut ◽  
Harry J. Flint

ABSTRACT 16S rRNA-targeted oligonucleotide probes were designed for butyrate-producing bacteria from human feces. Three new cluster-specific probes detected bacteria related to Roseburia intestinalis, Faecalibacterium prausnitzii, and Eubacterium hallii at mean populations of 2.3, 3.8, and 0.6%, respectively, in samples from 10 individuals. Additional species-level probes accounted for no more than 1%, with a mean of 7.7%, of the total human fecal microbiota identified as butyrate producers in this study. Bacteria related to E. hallii and the genera Roseburia and Faecalibacterium are therefore among the most abundant known butyrate-producing bacteria in human feces.

2020 ◽  
Vol 21 (19) ◽  
pp. 7110
Author(s):  
Po-Li Wei ◽  
Ching-Sheng Hung ◽  
Yi-Wei Kao ◽  
Ying-Chin Lin ◽  
Cheng-Yang Lee ◽  
...  

Accurate and rapid identification of microbiotic communities using 16S ribosomal (r)RNA sequencing is a critical task for expanding medical and clinical applications. Next-generation sequencing (NGS) is widely considered a practical approach for direct application to communities without the need for in vitro culturing. In this report, a comparative evaluation of short-read (Illumina) and long-read (Oxford Nanopore Technologies (ONT)) platforms toward 16S rRNA sequencing with the same batch of total genomic DNA extracted from fecal samples is presented. Different 16S gene regions were amplified, bar-coded, and sequenced using the Illumina MiSeq and ONT MinION sequencers and corresponding kits. Mapping of the sequenced amplicon using MinION to the entire 16S rRNA gene was analyzed with the cloud-based EPI2ME algorithm. V3–V4 reads generated using MiSeq were aligned by applying the CLC genomics workbench. More than 90% of sequenced reads generated using distinct sequencers were accurately classified at the genus or species level. The misclassification of sequenced reads at the species level between the two approaches was less substantial as expected. Taken together, the comparative results demonstrate that MinION sequencing platform coupled with the corresponding algorithm could function as a practicable strategy in classifying bacterial community to the species level.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin J. Callahan ◽  
Dmitry Grinevich ◽  
Siddhartha Thakur ◽  
Michael A. Balamotis ◽  
Tuval Ben Yehezkel

Abstract Background Out of the many pathogenic bacterial species that are known, only a fraction are readily identifiable directly from a complex microbial community using standard next generation DNA sequencing. Long-read sequencing offers the potential to identify a wider range of species and to differentiate between strains within a species, but attaining sufficient accuracy in complex metagenomes remains a challenge. Methods Here, we describe and analytically validate LoopSeq, a commercially available synthetic long-read (SLR) sequencing technology that generates highly accurate long reads from standard short reads. Results LoopSeq reads are sufficiently long and accurate to identify microbial genes and species directly from complex samples. LoopSeq perfectly recovered the full diversity of 16S rRNA genes from known strains in a synthetic microbial community. Full-length LoopSeq reads had a per-base error rate of 0.005%, which exceeds the accuracy reported for other long-read sequencing technologies. 18S-ITS and genomic sequencing of fungal and bacterial isolates confirmed that LoopSeq sequencing maintains that accuracy for reads up to 6 kb in length. LoopSeq full-length 16S rRNA reads could accurately classify organisms down to the species level in rinsate from retail meat samples, and could differentiate strains within species identified by the CDC as potential foodborne pathogens. Conclusions The order-of-magnitude improvement in length and accuracy over standard Illumina amplicon sequencing achieved with LoopSeq enables accurate species-level and strain identification from complex- to low-biomass microbiome samples. The ability to generate accurate and long microbiome sequencing reads using standard short read sequencers will accelerate the building of quality microbial sequence databases and removes a significant hurdle on the path to precision microbial genomics.


2003 ◽  
Vol 43 (3) ◽  
pp. 299-308 ◽  
Author(s):  
Svetlana N Dedysh ◽  
Peter F Dunfield ◽  
Manigee Derakshani ◽  
Stephan Stubner ◽  
Jürgen Heyer ◽  
...  

2015 ◽  
Vol 81 (21) ◽  
pp. 7582-7592 ◽  
Author(s):  
Mireia Lopez-Siles ◽  
Margarita Martinez-Medina ◽  
Carles Abellà ◽  
David Busquets ◽  
Miriam Sabat-Mir ◽  
...  

ABSTRACTFaecalibacterium prausnitziidepletion in intestinal diseases has been extensively reported, but little is known about intraspecies variability. This work aims to determine if subjects with gastrointestinal disease host mucosa-associatedF. prausnitziipopulations different from those hosted by healthy individuals. A new species-specific PCR-denaturing gradient gel electrophoresis (PCR-DGGE) method targeting the 16S rRNA gene was developed to fingerprintF. prausnitziipopulations in biopsy specimens from 31 healthy control (H) subjects and 36 Crohn's disease (CD), 23 ulcerative colitis (UC), 6 irritable bowel syndrome (IBS), and 22 colorectal cancer (CRC) patients. The richness ofF. prausnitziisubtypes was lower in inflammatory bowel disease (IBD) patients than in H subjects. The most prevalent operational taxonomic units (OTUs) consisted of four phylotypes (OTUs with a 99% 16S rRNA gene sequence similarity [OTU99]), which were shared by all groups of patients. Their distribution and the presence of some disease-specificF. prausnitziiphylotypes allowed us to differentiate the populations in IBD and CRC patients from that in H subjects. At the level of a minimum similarity of 97% (OTU97), two phylogroups accounted for 98% of the sequences. Phylogroup I was found in 87% of H subjects but in under 50% of IBD patients (P= 0.003). In contrast, phylogroup II was detected in >75% of IBD patients and in only 52% of H subjects (P= 0.005). This study reveals that even though the main members of theF. prausnitziipopulation are present in both H subjects and individuals with gut diseases, richness is reduced in the latter and an altered phylotype distribution exists between diseases. This approach may serve as a basis for addressing the suitability ofF. prausnitziiphylotypes to be quantified as a putative biomarker of disease and depicting the importance of the loss of these subtypes in disease pathogenesis.


2010 ◽  
Vol 73 (2) ◽  
pp. 390-394 ◽  
Author(s):  
YING WANG ◽  
TIANLI YUE ◽  
YAHONG YUAN ◽  
ZHENPENG GAO

Eight strains of thermo-acidophilic bacteria have been isolated from apple orchards in Shaanxi Province, China. The isolated strains were identified at the species level by comparing 16S rRNA gene sequences. It was found that all strains could be assigned to two genera. The strain YL-5 belonged to Alicyclobacillus, and other isolates belonged to Bacillus. The enzymatic patterns by the API ZYM system showed very significant differences between 12 strains of Alicyclobacillus and 8 strains of Bacillus. The ability of guaiacol production varied among different strains.


Sign in / Sign up

Export Citation Format

Share Document