scholarly journals Impact of Consumption of Oligosaccharide-Containing Biscuits on the Fecal Microbiota of Humans

2004 ◽  
Vol 70 (4) ◽  
pp. 2129-2136 ◽  
Author(s):  
Gerald W. Tannock ◽  
Karen Munro ◽  
Rodrigo Bibiloni ◽  
Mary A. Simon ◽  
Patrick Hargreaves ◽  
...  

ABSTRACT Human subjects consumed biscuits containing either galacto-oligosaccharides or fructo-oligosaccharides in a double-blinded, crossover study. The impact of supplementing the diet with three biscuits per day on the fecal microbiota was evaluated by selective culture of particular bacterial groups, measurement of β-galactosidase activity, and nucleic acid-based analytical methods (PCR-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescent in situ hybridization). The composition of the bifidobacterial populations was monitored at the level of species (PCR-DGGE) and strains (pulsed-field gel electrophoresis of DNA digests), and representative cultures were tested quantitatively for their ability to use galacto-oligosaccharides. Technical improvements to DGGE analysis of the microbiota were made by the use of an internal standard that allowed valid comparisons of fragment staining intensities to be made between profiles, the use of S1 nuclease digestion to remove single-stranded DNA to facilitate cloning of DNA sequences cut from gels, and the extraction of RNA to be used as the template in reverse transcription-PCR-DGGE. RNA-DGGE profiles were markedly different (Dice's similarity coefficient, 58.5%) from those generated by DNA-DGGE. Neither the sizes of the bacterial populations nor the DNA-DGGE profiles of the microbiota were altered by the consumption of the biscuits, but the RNA-DGGE profiles were altered by the detection or increased staining intensity of 16S rRNA gene sequences originating from Bifidobacterium adolescentis and/or Colinsella aerofaciens in the feces of 11 of 15 subjects. β-Galactosidase activity was elevated in the feces of some subjects as a result of biscuit consumption. Subjects differed in the ability of the bifidobacterial strains harbored in their feces to use galacto-oligosaccharides. Our observations suggest that a phylogenetic approach to analysis of the gut ecosystem may not always be optimal and that a more physiological (biochemical) method might be more informative.

2006 ◽  
Vol 72 (9) ◽  
pp. 5990-5997 ◽  
Author(s):  
Tom Vanhoutte ◽  
Vicky De Preter ◽  
Evie De Brandt ◽  
Kristin Verbeke ◽  
Jean Swings ◽  
...  

ABSTRACT Diet is a major factor in maintaining a healthy human gastrointestinal tract, and this has triggered the development of functional foods containing a probiotic and/or prebiotic component intended to improve the host's health via modulation of the intestinal microbiota. In this study, a long-term placebo-controlled crossover feeding study in which each subject received several treatments was performed to monitor the effect of a prebiotic substrate (i.e., lactulose), a probiotic organism (i.e., Saccharomyces boulardii), and their synbiotic combination on the fecal microbiota of three groups of 10 healthy human subjects differing in prebiotic dose and/or intake of placebo versus synbiotic. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was used to detect possible changes in the overall bacterial composition using the universal V3 primer and to detect possible changes at the subpopulation level using group-specific primers targeting the Bacteroides fragilis subgroup, the genus Bifidobacterium, the Clostridium lituseburense group (cluster XI), and the Clostridium coccoides-Eubacterium rectale group (cluster XIVa). Although these populations remained fairly stable based on DGGE profiling, one pronounced change was observed in the universal fingerprint profiles after lactulose ingestion. Band position analysis and band sequencing revealed that a band appearing or intensifying following lactulose administration could be assigned to the species Bifidobacterium adolescentis. Subsequent analysis with real-time PCR (RT-PCR) indicated a statistically significant increase (P < 0.05) in total bifidobacteria in one of the three subject groups after lactulose administration, whereas a similar but nonsignificant trend was observed in the other two groups. Combined RT-PCR results from two subject groups indicated a borderline significant increase (P = 0.074) of B. adolescentis following lactulose intake. The probiotic yeast S. boulardii did not display any detectable universal changes in the DGGE profiles, nor did it influence the bifidobacterial levels. This study highlighted the capacity of an integrated approach consisting of DGGE analysis and RT-PCR to monitor and quantify pronounced changes in the fecal microbiota of healthy subjects upon functional food administration.


2000 ◽  
Vol 66 (7) ◽  
pp. 2959-2964 ◽  
Author(s):  
Gregory M. Colores ◽  
Richard E. Macur ◽  
David M. Ward ◽  
William P. Inskeep

ABSTRACT We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulatedRhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenespopulations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas andAlcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization.


2005 ◽  
Vol 71 (8) ◽  
pp. 4679-4689 ◽  
Author(s):  
Kaouther Ben-Amor ◽  
Hans Heilig ◽  
Hauke Smidt ◽  
Elaine E. Vaughan ◽  
Tjakko Abee ◽  
...  

ABSTRACT A novel approach combining a flow cytometric in situ viability assay with 16S rRNA gene analysis was used to study the relationship between diversity and activity of the fecal microbiota. Simultaneous staining with propidium iodide (PI) and SYTO BC provided clear discrimination between intact cells (49%), injured or damaged cells (19%), and dead cells (32%). The three subpopulations were sorted and characterized by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons obtained from the total and bifidobacterial communities. This analysis revealed that not only the total community but also the distinct subpopulations are characteristic for each individual. Cloning and sequencing of the dominant bands of the DGGE patterns showed that most of clones retrieved from the live, injured, and dead fractions belonged to Clostridium coccoides, Clostridium leptum, and Bacteroides. We found that some of the butyrate-producing related bacteria, such as Eubacterium rectale and Eubacterium hallii, were obviously viable at the time of sampling. However, amplicons affiliated with Bacteroides and Ruminococcus obeum- and Eubacterium biforme-like bacteria, as well as Butyrivibrio crossotus, were obtained especially from the dead population. Furthermore, some bacterial clones were recovered from all sorted fractions, and this was especially noticeable for the Clostridium leptum cluster. The bifidobacterial phylotypes identified in total samples and sorted fractions were assigned to Bifidobacterium adolescentis, Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium pseudocatenulatum, and Bifidobacterium bifidum. Phylogenetic analysis of the live, dead, and injured cells revealed a remarkable physiological heterogeneity within these bacterial populations; B. longum and B. infantis were retrieved from all sorted fractions, while B. adolescentis was recovered mostly from the sorted dead fraction.


2007 ◽  
Vol 73 (14) ◽  
pp. 4609-4618 ◽  
Author(s):  
Samuel Ohene-Adjei ◽  
Ronald M. Teather ◽  
Michael Ivan ◽  
Robert J. Forster

ABSTRACT Association patterns between archaea and rumen protozoa were evaluated by analyzing archaeal 16S rRNA gene clone libraries from ovine rumen inoculated with different protozoa. Five protozoan inoculation treatments, fauna free (negative control), holotrich and cellulolytic protozoa, Isotricha and Dasytricha spp., Entodinium spp., and total fauna (type A) were tested. We used denaturing gradient gel electrophoresis, quantitative PCR, and phylogenetic analysis to evaluate the impact of the protozoan inoculants on the respective archaeal communities. Protozoan 18S ribosomal DNA clone libraries were also evaluated to monitor the protozoal population that was established by the inoculation. Phylogenetic analysis suggested that archaeal clones associated with the fauna-free, the Entodinium, and the type A inoculations clustered primarily with uncultured phylotypes. Polyplastron multivesiculatum was the predominant protozoan strain established by the holotrich and cellulolytic protozoan treatment, and this resulted predominantly in archaeal clones affiliated with uncultured and cultured methanogenic phylotypes (Methanosphaera stadtmanae, Methanobrevibacter ruminantium, and Methanobacterium bryantii). Furthermore, the Isotricha and Dasytricha inoculation treatment resulted primarily in archaeal clones affiliated with Methanobrevibacter smithii. This report provides the first assessment of the influence of protozoa on archaea within the rumen microbial community and provides evidence to suggest that different archaeal phylotypes associate with specific groups of protozoa. The observed patterns may be linked to the evolution of commensal and symbiotic relationships between archaea and protozoa in the ovine rumen environment. This report further underscores the prevalence and potential importance of a rather large group of uncultivated archaea in the ovine rumen, probably unrelated to known methanogens and undocumented in the bovine rumen.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Qiufen Li ◽  
Yan Zhang ◽  
David Juck ◽  
Nathalie Fortin ◽  
Charles W. Greer

The impact of intensive land-based fish culture in Qingdao, China, on the bacterial communities in surrounding marine environment was analyzed. Culture-based studies showed that the highest counts of heterotrophic, ammonium-oxidizing, nitrifying, and nitrate-reducing bacteria were found in fish ponds and the effluent channel, with lower counts in the adjacent marine area and the lowest counts in the samples taken from 500 m off the effluent channel. Denaturing gradient gel electrophoresis (DGGE) analysis was used to assess total bacterial diversity. Fewer bands were observed from the samples taken from near the effluent channel compared with more distant sediment samples, suggesting that excess nutrients from the aquaculture facility may be reducing the diversity of bacterial communities in nearby sediments. Phylogenetic analysis of the sequenced DGGE bands indicated that the bacteria community of fish-culture-associated environments was mainly composed of Flavobacteriaceae, gamma- and deltaproteobacteria, including generaGelidibacter, Psychroserpen, Lacinutrix,andCroceimarina.


2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


Author(s):  
Marcial-Quino J. ◽  
Garcia-Ocón B. ◽  
Mendoza-Espinoza J.A. ◽  
Gómez-Manzo S. ◽  
Sierra-Palacios E

Currently it is well known that yeasts play an essential role in the production of different beverages. In this paper, were identified some of the yeasts involved in the fermentation process of the pulque, a Mexican traditional beverage. Samples were collected from different regions of Mexico and yeasts were detected directly from samples without cultivation. Identifying the yeasts was obtained using amplification the D1/D2 domain of the 26S rRNA gene and Denaturing Gradient Gel Electrophoresis (DGGE). The results of DGGE showed different profiles of bands in each of the analyzed samples, indicating the presence of several species of yeast, which was also confirmed by sequencing of the bands corresponding to the domain D1/D2, succeeded in identifying five species of yeasts. The results obtained in this work demonstrated that the technique used for identification of yeasts of pulque was efficient. Besides, the optimization of this method could also allow rapid identification of yeasts and help understand the role of these in the fermentation process of this beverage, as well as the isolation of strains of interest for biotechnological purposes such as production of ethanol or metabolites with nutraceutical activity.


2001 ◽  
Vol 67 (11) ◽  
pp. 5113-5121 ◽  
Author(s):  
Luca Cocolin ◽  
Marisa Manzano ◽  
Carlo Cantoni ◽  
Giuseppe Comi

ABSTRACT In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) protocol was used to monitor the dynamic changes in the microbial population during ripening of natural fermented sausages. The method was first optimized by using control strains from international collections, and a natural sausage fermentation was studied by PCR-DGGE and traditional methods. Total microbial DNA and RNA were extracted directly from the sausages and subjected to PCR and reverse transcription-PCR, and the amplicons obtained were analyzed by DGGE. Lactic acid bacteria (LAB) were present together with other organisms, mainly members of the family Micrococcaceae and meat contaminants, such as Brochothrix thermosphacta andEnterococcus sp., during the first 3 days of fermentation. After 3 days, LAB represented the main population, which was responsible for the acidification and proteolysis that determined the characteristic organoleptic profile of the Friuli Venezia Giulia fermented sausages. The PCR-DGGE protocol for studying sausage fermentation proved to be a good tool for monitoring the process in real time, and it makes technological adjustments possible when they are required.


Sign in / Sign up

Export Citation Format

Share Document