Inhibitory Activity of Cheese Whey Fermented with Kefir Grains

2011 ◽  
Vol 74 (1) ◽  
pp. 94-100 ◽  
Author(s):  
A. LONDERO ◽  
R. QUINTA ◽  
A. G. ABRAHAM ◽  
R. SERENO ◽  
G. DE ANTONI ◽  
...  

We investigated the chemical and microbiological compositions of three types of whey to be used for kefir fermentation as well as the inhibitory capacity of their subsequent fermentation products against 100 Salmonella sp. and 100 Escherichia coli pathogenic isolates. All the wheys after fermentation with 10% (wt/vol) kefir grains showed inhibition against all 200 isolates. The content of lactic acid bacteria in fermented whey ranged from 1.04 × 107 to 1.17 × 107 CFU/ml and the level of yeasts from 2.05 × 106 to 4.23 × 106 CFU/ml. The main changes in the chemical composition during fermentation were a decrease in lactose content by 41 to 48% along with a corresponding lactic acid production to a final level of 0.84 to 1.20% of the total reaction products. The MIC was a 30% dilution of the fermentation products for most of the isolates, while the MBC varied between 40 and 70%, depending on the isolate. The pathogenic isolates Salmonella enterica serovar Enteritidis 2713 and E. coli 2710 in the fermented whey lost their viability after 2 to 7 h of incubation. When pathogens were deliberately inoculated into whey before fermentation, the CFU were reduced by 2 log cycles for E. coli and 4 log cycles for Salmonella sp. after 24 h of incubation. The inhibition was mainly related to lactic acid production. This work demonstrated the possibility of using kefir grains to ferment an industrial by-product in order to obtain a natural acidic preparation with strong bacterial inhibitory properties that also contains potentially probiotic microorganisms.

2012 ◽  
Vol 476-478 ◽  
pp. 2051-2054 ◽  
Author(s):  
Jin Fang Zhao ◽  
Li Yuan Xu ◽  
Yong Ze Wang ◽  
Jin Hua Wang ◽  
Sheng De Zhou

Escherichia coli W produces a mixture of organic acids during fermentation in mineral salts medium using glucose as the sole carbon source. Among these products, D-lactate, acetate, succinate, and ethanol are the majors, with formate as a minor. In order to evaluate the effect of adhE mutation on the metabolism for D-lactic acid production by E. coli W, an adhE deletion mutant JH11 was constructed using the RED recombination system and the flipase recognition target (FRT) site-specific recombinant technology. Compared to the parent strain, JH11 produced significantly higher concentration of D-lactate due to the increased NADH availability, with slightly changed acetate (increased), and succinate (decreased), in fermentations using mineral salts medium containing glucose as the carbon source and calcium carbonate as the neutralizer.


2005 ◽  
Vol 71 (12) ◽  
pp. 7880-7887 ◽  
Author(s):  
Sang Jun Lee ◽  
Dong-Yup Lee ◽  
Tae Yong Kim ◽  
Byung Hun Kim ◽  
Jinwon Lee ◽  
...  

ABSTRACT Comparative analysis of the genomes of mixed-acid-fermenting Escherichia coli and succinic acid-overproducing Mannheimia succiniciproducens was carried out to identify candidate genes to be manipulated for overproducing succinic acid in E. coli. This resulted in the identification of five genes or operons, including ptsG, pykF, sdhA, mqo, and aceBA, which may drive metabolic fluxes away from succinic acid formation in the central metabolic pathway of E. coli. However, combinatorial disruption of these rationally selected genes did not allow enhanced succinic acid production in E. coli. Therefore, in silico metabolic analysis based on linear programming was carried out to evaluate the correlation between the maximum biomass and succinic acid production for various combinatorial knockout strains. This in silico analysis predicted that disrupting the genes for three pyruvate forming enzymes, ptsG, pykF, and pykA, allows enhanced succinic acid production. Indeed, this triple mutation increased the succinic acid production by more than sevenfold and the ratio of succinic acid to fermentation products by ninefold. It could be concluded that reducing the metabolic flux to pyruvate is crucial to achieve efficient succinic acid production in E. coli. These results suggest that the comparative genome analysis combined with in silico metabolic analysis can be an efficient way of developing strategies for strain improvement.


2005 ◽  
Vol 122 (1-3) ◽  
pp. 0529-0540 ◽  
Author(s):  
Abolghasem Shahbazi ◽  
Michele R. Mims ◽  
Yebo Li ◽  
Vestal Shirley ◽  
Salam A. Ibrahim ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Manel Ziadi ◽  
Sana M’Hir ◽  
Abdelkarim Aydi ◽  
Moktar Hamdi

Kinetic modeling of biomass and lactic acid production by Enterococcus faecalis SLT13 have been developed during batch culture in M17 and Hydrolyzed Cheese Whey (HCW) in 2 L and 20 L bioreactors. The specific growth rate μmax was higher in 20 L bioreactor (1.09 h−1); however, the maximum specific lactic acid production rate qpmax and maximum specific sugar utilization rate qsmax were higher in 2 L bioreactor. Biomass and sugar utilization were affected by lactic acid inhibition in HCW. No effects of substrate inhibition have been observed. Substrate limitation of biomass has been observed on HCW in 20 L bioreactor; the substrate limitation constant for biomass Ksx was 4.229 g/L. Substrate limitation of sugar consumption has been observed on M17 in 2 L bioreactor; the substrate limitation constant for sugar consumption Kss was 2.73 g/L. Compared to experimental data, the model provided good predictions for biomass, sugar consumption, and lactic acid production.


2006 ◽  
Vol 49 (4) ◽  
pp. 1263-1267 ◽  
Author(s):  
Y. Li ◽  
A. Shahbazi ◽  
S. Coulibaly

2013 ◽  
Vol 641-642 ◽  
pp. 721-724
Author(s):  
Zhao Min Zheng ◽  
Tian Tian ◽  
Jin Hua Wang ◽  
Yong Ze Wang ◽  
Sheng De Zhou

WD100, knocked out adhE of Escherichia coli SZ470 and inserted ldhA into Escherichia coli WD01, was genetically engineered to utilize xylose. D-lactate production was investigated for shake flask cultures with xylose. In 64h WD100 produce 10.1g/L D-lactate in the shaking flask And it consumed 25g/L xylose during the ending of fermentation.This volumetric productivity with xylose is 0.14 g·L-1·h-1.Because of pyruvate decarboxylase (poxB) expressed in flask fermention,acetate production was up to 4.7g/L.Succinate,formate,ethanol was also produced as a minor product during fermentation.


Sign in / Sign up

Export Citation Format

Share Document