scholarly journals Combined Approach for Characterization of Uncultivated Magnetotactic Bacteria from Various Aquatic Environments

2005 ◽  
Vol 71 (5) ◽  
pp. 2723-2731 ◽  
Author(s):  
Christine B. Flies ◽  
Jörg Peplies ◽  
Dirk Schüler

ABSTRACT Both magnetic collection and “race track” purification techniques were highly effective for selective enrichment of magnetotactic bacteria (MTB) from complex communities, as suggested by amplified ribosomal DNA restriction analysis and denaturing gradient gel electrophoresis combined with sequence analysis of 16S rRNA genes. Using these purification methods, the occurrence and diversity of MTB in microcosms from various marine and freshwater environments were assayed by using a combined microscopic, molecular, and cultivation approach. Most microcosms were dominated by magnetotactic cocci. Consistently, the majority of retrieved 16S RNA sequences were affiliated with a distinct cluster in the Alphaproteobacteria. Within this lineage the levels of sequence divergence were <1 to 11%, indicating genus-level diversity between magnetotactic cocci from various microcosms, as well as between MTB from different stages of succession of the same microcosms. The community composition in microscosms underwent drastic succession during incubation, and significant heterogeneities were observed between microcosms from the same environmental sources. A novel magnetotactic rod (MHB-1) was detected in a sediment sample from a lake in northern Germany by fluorescence in situ hybridization. MHB-1 falls into the Nitrospira phylum, displaying 91% 16S rRNA sequence similarity to “Magnetobacterium bavaricum.” In extensive cultivation attempts, we failed to isolate MHB-1, as well as most other MTB present in our samples. However, although magnetotactic spirilla were not frequently observed in the enrichments, 10 novel isolates of the genus Magnetospirillum which had not routinely been isolated in pure culture before were obtained.

2004 ◽  
Vol 186 (9) ◽  
pp. 2629-2635 ◽  
Author(s):  
Silvia G. Acinas ◽  
Luisa A. Marcelino ◽  
Vanja Klepac-Ceraj ◽  
Martin F. Polz

ABSTRACT The level of sequence heterogeneity among rrn operons within genomes determines the accuracy of diversity estimation by 16S rRNA-based methods. Furthermore, the occurrence of widespread horizontal gene transfer (HGT) between distantly related rrn operons casts doubt on reconstructions of phylogenetic relationships. For this study, patterns of distribution of rrn copy numbers, interoperonic divergence, and redundancy of 16S rRNA sequences were evaluated. Bacterial genomes display up to 15 operons and operon numbers up to 7 are commonly found, but ∼40% of the organisms analyzed have either one or two operons. Among the Archaea, a single operon appears to dominate and the highest number of operons is five. About 40% of sequences among 380 operons in 76 bacterial genomes with multiple operons were identical to at least one other 16S rRNA sequence in the same genome, and in 38% of the genomes all 16S rRNAs were invariant. For Archaea, the number of identical operons was only 25%, but only five genomes with 21 operons are currently available. These considerations suggest an upper bound of roughly threefold overestimation of bacterial diversity resulting from cloning and sequencing of 16S rRNA genes from the environment; however, the inclusion of genomes with a single rrn operon may lower this correction factor to ∼2.5. Divergence among operons appears to be small overall for both Bacteria and Archaea, with the vast majority of 16S rRNA sequences showing <1% nucleotide differences. Only five genomes with operons with a higher level of nucleotide divergence were detected, and Thermoanaerobacter tengcongensis exhibited the highest level of divergence (11.6%) noted to date. Overall, four of the five extreme cases of operon differences occurred among thermophilic bacteria, suggesting a much higher incidence of HGT in these bacteria than in other groups.


2007 ◽  
Vol 57 (12) ◽  
pp. 2908-2911 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Seon-Young Lee ◽  
Byung-Yong Kim ◽  
Hyung-Jun Noh ◽  
Peter Schumann ◽  
...  

Two Gram-negative, rod-shaped, thermophilic bacterial strains, HC145T and HC148T, were isolated from a compost sample from a compost facility in Ichon, Korea. Sequencing of the 16S rRNA genes of HC145T and HC148T and comparative analyses of the resulting sequences clearly showed that these strains had a phylogenetic affiliation to the genus Ureibacillus. The level of 16S rRNA similarity between the two novel strains was 98.4 % and the levels of sequence similarity between them and existing Ureibacillus species were 97.8–98.1 (HC145T) and 97.4–98.7 % (HC148T). The DNA–DNA reassociation values between the two strains and the type strains of Ureibacillus species ranged from 38 to 51 %. The polar lipid profiles for both isolates consisted of phosphatidylglycerol, diphosphatidylglycerol, phospholipids and glycolipids of unknown composition. The major quinones were MK-8, MK-9 and MK-7, the peptidoglycan type was l-Lys←d-Asp and the main cellular fatty acid was iso-C16 : 0. The DNA G+C contents of strains HC145T and HC148T were 42.4 and 38.5 mol%, respectively. On the basis of the data from this polyphasic study, strains HC145T and HC148T represent members of the genus Ureibacillus, for which the names Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., respectively, are proposed. The type strain of U. composti is HC145T (=KACC 11361T =DSM 17951T) and the type strain of U. thermophilus is HC148T (=KACC 11362T =DSM 17952T).


Author(s):  
Martin Hahn ◽  
Andrea Huemer ◽  
Alexandra Pitt ◽  
Matthias Hoetzinger

Current knowledge on environmental distribution and taxon richness of free-living bacteria is mainly based on cultivation-independent investigations employing 16S rRNA gene sequencing methods. Yet, 16S rRNA genes are evolutionarily rather conserved, resulting in limited taxonomic and ecological resolutions provided by this marker. We used a faster evolving protein-encoding marker to reveal ecological patterns hidden within a single OTU defined by >99% 16S rRNA sequence similarity. The studied taxon, subcluster PnecC of the genus Polynucleobacter, represents a ubiquitous group of planktonic freshwater bacteria with cosmopolitan distribution, which is very frequently detected by diversity surveys of freshwater systems. Based on genome taxonomy and a large set of genome sequences, a sequence similarity threshold for delineation of species-like taxa could be established. In total, 600 species-like taxa were detected in 99 freshwater habitats scattered across three regions representing a latitudinal range of 3400 km (42°N to 71°N) and a pH gradient of 4.2 to 8.6. Besides the unexpectedly high richness, the increased taxonomic resolution revealed structuring of Polynucleobacter communities by a couple of macroecological trends, which was previously only demonstrated for phylogenetically much broader groups of bacteria. A unexpected pattern was the almost complete compositional separation of Polynucleobacter communities of Ca-rich and Ca-poor habitats, which strongly resembled the vicariance of plant species on silicate and limestone soils. The presented new cultivation-independent approach opened a window to an incredible, previously unseen diversity, and enables investigations aiming on deeper understanding of how environmental conditions shape bacterial communities and drive evolution of free-living bacteria.


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2320-2325 ◽  
Author(s):  
Shih-Yao Lin ◽  
Asif Hameed ◽  
Cheng-Zhe Wen ◽  
You-Cheng Liu ◽  
Yi-Han Hsu ◽  
...  

A Gram-stain-negative, aerobic, rod-shaped, yellow-pigment-producing bacterium (designated strain CC-CZW007T) was isolated from seafood samples (sea urchins) at Penghu Island in Taiwan. Strain CC-CZW007T grew optimally at pH 7.0 and 30 °C in the presence of 3 % (w/v) NaCl. The novel strain shared highest 16S rRNA gene sequence similarity to Vitellibacter vladivostokensis JCM 11732T (96.8 %), Vitellibacter soesokkakensis KCTC 32536T (96.4 %), Vitellibacter nionensis KCTC 32420T (95.8 %) and Vitellibacter aestuarii JCM 15496T (95.6 %) and lower sequence similarity to members of other genera. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CZW007T with respect to other species of the genus Vitellibacter. The major fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipid profile was composed of major amounts of phosphatidylethanolamine, unidentified lipids and aminolipids; a moderate amount of aminophospholipid was also detected. The DNA G+C content was 34.7 mol%. The predominant quinone system was menaquinone (MK-6). On the basis of polyphasic taxonomic evidence presented here, strain CC-CZW007T is proposed to represent a novel species within the genus Vitellibacter, for which the name Vitellibacter echinoideorum sp. nov. is proposed. The type strain is CC-CZW007T ( = BCRC 80886T = JCM 30378T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1959-1963 ◽  
Author(s):  
M. J. Pujalte ◽  
M. C. Macián ◽  
D. R. Arahal ◽  
E. Garay

The type strains of Jannaschia cystaugens (LMG 22015T) and Thalassobacter stenotrophicus (CECT 5294T) were analysed by means of genomic DNA–DNA hybridization, comparison of 16S rRNA gene sequences and phenotypic properties determined under the same methodological conditions. J. cystaugens LMG 22015T showed DNA–DNA relatedness levels of 72 % when hybridized with the genomic DNA of T. stenotrophicus CECT 5294T. Sequence comparisons revealed that the 16S rRNA genes of the two strains had a similarity of 99·8 %. The cellular fatty acid and polar lipid compositions of the two strains and their DNA mol% G+C contents were almost identical. Bacteriochlorophyll a (Bchl a) and polyhydroxybutyrate were produced by both strains under the same culture conditions. Their closest phylogenetic neighbours were Jannaschia helgolandensis and Jannaschia rubra; however, the low sequence similarity values (95·7–95·9 %) and several important differences in phenotypic traits (ionic requirements, Bchl a production and polar lipids) support the distinction between the genera Thalassobacter and Jannaschia. Thus, we propose the unification of J. cystaugens (LMG 22015T) and T. stenotrophicus (CECT 5294T) as Thalassobacter stenotrophicus (type strain, CECT 5294T=DSM 16310T). An emended description of the genus Thalassobacter is also presented.


2000 ◽  
Vol 66 (3) ◽  
pp. 1098-1106 ◽  
Author(s):  
Steven P. Djordjevic ◽  
Wendy A. Forbes ◽  
Lisa A. Smith ◽  
Michael A. Hornitzky

ABSTRACT Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI,CfoI, AluI, FokI, andRsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in theHinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI,FokI, and HinfI differentiated P. alvei from the phylogenetically closely related speciesPaenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1,555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymesCfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity inP. alvei isolates may be a reflection of adaptation to the special habitats in which they originated.


2007 ◽  
Vol 57 (7) ◽  
pp. 1402-1407 ◽  
Author(s):  
M. C. Gutiérrez ◽  
A. M. Castillo ◽  
M. Kamekura ◽  
Y. Xue ◽  
Y. Ma ◽  
...  

Strain SH-6T was isolated from the sediment of Lake Shangmatala, a saline lake in Inner Mongolia (China). Cells were pleomorphic. The organism was neutrophilic and required at least 2.5 M (15 %) NaCl, but not MgCl2, for growth; optimal growth occurred at 4.3 M (25 %) NaCl. The G+C content of its DNA was 63.1 mol%. 16S rRNA gene sequence analysis revealed that strain SH-6T is a member of the family Halobacteriaceae, but there was a low level of similarity with other members of this family. Highest sequence similarity (94.6 %) was obtained with the 16S rRNA genes of the type strains of Natronolimnobius innermongolicus and Natronolimnobius baerhuensis. Polar lipid analyses revealed that strain SH-6T contains phosphatidylglycerol and phosphatidylglyceromethylphosphate, derived from both C20C20 and C20C25 glycerol diethers together with the glycolipid S2-DGD-1. On the basis of the data obtained, the new isolate could not be classified in any recognized genus. Strain SH-6T is thus considered to represent a novel species in a new genus within the family Halobacteriaceae, order Halobacteriales, for which the name Halopiger xanaduensis gen. nov., sp. nov. is proposed. The type strain of Halopiger xanaduensis is SH-6T (=CECT 7173T=CGMCC 1.6379T=JCM 14033T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2274-2279 ◽  
Author(s):  
Cheol Su Park ◽  
Kyudong Han ◽  
Tae-Young Ahn

A Gram-staining-negative, strictly aerobic, rod-shaped, pale-pink pigmented bacterial strain, designated TF8T, was isolated from leaf mould in Cheonan, Republic of Korea. Its taxonomic position was determined through a polyphasic approach. Optimal growth occurred on R2A agar without NaCl supplementation, at 25–28 °C and at pH 6.0–7.0. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TF8T belongs to the genus Mucilaginibacter in the family Sphingobacteriaceae . The sequence similarity between 16S rRNA genes of strain TF8T and the type strains of other species of the genus Mucilaginibacter ranged from 92.1 to 94.7 %. The closest relatives of strain TF8T were Mucilaginibacter lutimaris BR-3T (94.7 %), M. soli R9-65T (94.5 %), M. litoreus BR-18T (94.5 %), M. rigui WPCB133T (94.0 %) and M. daejeonensis Jip 10T (93.8 %). The major isoprenoid quinone was MK-7 and the major cellular fatty acids were iso-C15 : 0 (33.0 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 24.8 %) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 13.0 %). The major polar lipids of TF8T were phosphatidylethanolamine and three unidentified aminophospholipids. The G+C content of the genomic DNA was 46.2 mol%. On the basis of the data presented here, strain TF8T is considered to represent a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter koreensis sp. nov. is proposed. The type strain is TF8T ( = KACC 17468T = JCM 19323T).


Microbiology ◽  
2002 ◽  
Vol 148 (2) ◽  
pp. 481-496 ◽  
Author(s):  
Isabelle Iteman ◽  
Rosmarie Rippka ◽  
Nicole Tandeau de Marsac ◽  
Michael Herdman

The taxonomic coherence and phylogenetic relationships of 11 planktonic heterocystous cyanobacterial isolates were examined by investigating two areas of the rRNA operon, the 16S rRNA gene (rrnS) and the internal transcribed spacer (ITS) located between the 16S rRNA and 23S rRNA genes. The rrnS sequences were determined for five strains, including representatives of Anabaena flos-aquae, Aphanizomenon flos-aquae, Nodularia sp. and two alkaliphilic planktonic members of the genera Anabaenopsis and Cyanospira, whose phylogenetic position was previously unknown. Comparison of the data with those previously published for individual groups of planktonic heterocystous cyanobacteria showed that, with the exception of members assigned to the genus Cylindrospermopsis, all the planktonic strains form a distinct subclade within the monophyletic clade of heterocystous cyanobacteria. Within this subclade five different phylogenetic clusters were distinguished. The phylogenetic groupings of Anabaena and Aphanizomenon strains within three of these clusters were not always consistent with their generic or specific assignments based on classical morphological definitions, and the high degree of sequence similarity between strains of Anabaenopsis and Cyanospira suggests that they may be assignable to a single genus. Ribotyping and additional studies performed on PCR amplicons of the 16S rDNA or the ITS for the 11 planktonic heterocystous strains demonstrated that they all contain multiple rrn operons and ITS regions of variable size. Finally, evidence is provided for intra-genomic sequence heterogeneity of the 16S rRNA genes within most of the individual isolates.


2005 ◽  
Vol 71 (2) ◽  
pp. 904-911 ◽  
Author(s):  
Hiroyuki Futamata ◽  
Yayoi Nagano ◽  
Kazuya Watanabe ◽  
Akira Hiraishi

ABSTRACT A chemostat enrichment of soil bacteria growing on phenol as the sole carbon source has been shown to exhibit quite high trichloroethylene (TCE)-degrading activities (H. Futamata, S. Harayama, and K. Watanabe, Appl. Environ. Microbiol. 67:4671-4677, 2001). To identify the bacterial populations responsible for the high TCE-degrading activity, a multidisciplinary survey of the chemostat enrichment was conducted by employing molecular-ecological and culture-dependent approaches. Three chemostat enrichment cultures were newly developed under different phenol-loading conditions (0.25, 0.75, and 1.25 g liter−1 day−1) in this study, and the TCE-degrading activities of the enrichments were measured. Among them, the enrichment at 0.75 g liter−1 day−1 (enrichment 0.75) expressed the highest activity. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments detected a Variovorax ribotype as the strongest band in enrichment 0.75; however, it was not a major ribotype in the other samples. Bacteria were isolated from enrichment 0.75 by direct plating, and their 16S rRNA genes and genes encoding the largest subunit of phenol hydroxylase (LmPHs) were analyzed. Among the bacteria isolated, several strains were affiliated with the genus Variovorax and were shown to have high-affinity-type LmPHs. The LmPH of the Variovorax strains was also detected as the major genotype in enrichment 0.75. Kinetic analyses of phenol and TCE degradation revealed, however, that these strains exhibited quite low affinity for phenol compared to other phenol-degrading bacteria, while they showed quite high specific TCE-degrading activities and relatively high affinity for TCE. Owing to these unique kinetic traits, the Variovorax strains can obviate competitive inhibition of TCE degradation by the primary substrate of the catabolic enzyme (i.e., phenol), contributing to the high TCE-degrading activity of the chemostat enrichments. On the basis of physiological information, mechanisms accounting for the way the Variovorax population overgrew the chemostat enrichment are discussed.


Sign in / Sign up

Export Citation Format

Share Document