scholarly journals Molecular Evidence for Association of Chlamydiales Bacteria with Epitheliocystis in Leafy Seadragon (Phycodurus eques), Silver Perch (Bidyanus bidyanus), and Barramundi (Lates calcarifer)

2006 ◽  
Vol 72 (1) ◽  
pp. 284-290 ◽  
Author(s):  
Adam Meijer ◽  
Paul J. M. Roholl ◽  
Jacobus M. Ossewaarde ◽  
Brian Jones ◽  
Barbara F. Nowak

ABSTRACT Epitheliocystis in leafy seadragon (Phycodurus eques), silver perch (Bidyanus bidyanus), and barramundi (Lates calcarifer), previously associated with chlamydial bacterial infection using ultrastructural analysis, was further investigated by using molecular and immunocytochemical methods. Morphologically, all three species showed epitheliocystis cysts in the gills, and barramundi also showed lymphocystis cysts in the skin. From gill cysts of all three species and from skin cysts of barramundi 16S rRNA gene fragments were amplified by PCR and sequenced, which clustered by phylogenetic analysis together with other chlamydia-like organisms in the order Chlamydiales in a lineage separate from the family Chlamydiaceae. By using in situ RNA hybridization, 16S rRNA Chlamydiales-specific sequences were detected in gill cysts of silver perch and in gill and skin cysts of barramundi. By applying immunocytochemistry, chlamydial antigens (lipopolysaccharide and/or membrane protein) were detected in gill cysts of leafy seadragon and in gill and skin cysts of barramundi, but not in gill cysts of silver perch. In conclusion, this is the first time epitheliocystis agents of leafy seadragon, silver perch and barramundi have been undoubtedly identified as belonging to bacteria of the order Chlamydiales by molecular methods. In addition, the results suggested that lymphocystis cysts, known to be caused by iridovirus infection, could be coinfected with the epitheliocystis agent.

2007 ◽  
Vol 57 (4) ◽  
pp. 666-674 ◽  
Author(s):  
P. J. Blackall ◽  
Anders Miki Bojesen ◽  
Henrik Christensen ◽  
Magne Bisgaard

[Pasteurella] trehalosi is an important pathogen of sheep, being primarily associated with serious systemic infections in lambs but also having an association with pneumonia. The aim of the present investigation was to characterize a broad collection of strains tentatively identified as [P.] trehalosi in order to reclassify and rename this taxon to support improvements in our understanding of the pathogenesis and epidemiology of this important organism. The type strain for [P.] trehalosi, strain NCTC 10370T, was included along with 42 field isolates from sheep (21), cattle (14), goats (1), roe deer (3) and unknown sources (3). An extended phenotypic characterization was performed on all 43 strains. Amplified fragment length polymorphism (AFLP) was also performed on the isolates. Two of the field isolates were subjected to 16S rRNA gene sequencing. These sequences, along with five existing sequences for [P.] trehalosi strains and 12 sequences for other taxa in the family Pasteurellaceae, were subjected to a phylogenetic analysis. All the isolates and the reference strains were identified as [P.] trehalosi. A total of 17 out of 22 ovine isolates produced acid from all glycosides, while only four out of 14 bovine isolates produced acid from all glycosides. All 22 ovine isolates were haemolytic and CAMP-positive, while no other isolate was haemolytic and only two bovine isolates were CAMP-positive. Nineteen AFLP types were found within the [P.] trehalosi isolates. All [P.] trehalosi isolates shared at least 70 % similarity in AFLP patterns. The largest AFLP type included the type strain and 7 ovine field isolates. Phylogenetic analysis indicated that the seven strains studied (two field isolates and the five serovar reference strains) are closely related, with 98.6 % or higher 16S rRNA gene sequence similarity. As both genotypic and phenotypic testing support the separate and distinct nature of these organisms, we propose the transfer of [P.] trehalosi to a new genus, Bibersteinia, as Bibersteinia trehalosi comb. nov. The type strain is NCTC 10370T (=ATCC 29703T). Bibersteinia trehalosi can be distinguished from the existing genera of the family by the observation of only nine characteristics; catalase, porphyrin, urease, indole, phosphatase, acid from dulcitol, (+)-d-galactose, (+)-d-mannose and (+)-d-trehalose.


2007 ◽  
Vol 57 (7) ◽  
pp. 1673-1674 ◽  
Author(s):  
Masami Morotomi ◽  
Fumiko Nagai ◽  
Hiroshi Sakon

Megamonas hypermegale is the sole species of the genus Megamonas included in the List of Prokaryotic Names with Standing in Nomenclature and in the databases of DDBJ, EBI/EMBL and NCBI/GenBank it is placed in the lineage of Bacteroidetes; Bacteroidetes (class); ‘Bacteroidales’; Bacteroidaceae; Megamonas. Phylogenetic analysis based on comparative 16S rRNA gene sequencing showed that this species clustered with species of the family ‘Acidaminococcaceae’ but not with those of the Bacteroidaceae. The genus Megamonas should be placed in the lineage of Firmicutes; Clostridia; Clostridiales; ‘Acidaminococcaceae’; Megamonas.


2020 ◽  
Vol 70 (11) ◽  
pp. 5888-5898 ◽  
Author(s):  
María Paula Parada-Pinilla ◽  
Carolina Díaz-Cárdenas ◽  
Gina López ◽  
Jorge Iván Díaz-Riaño ◽  
Laura N. Gonzalez ◽  
...  

Two morphologically similar halophilic strains, named USBA 874 and USBA 960T, were isolated from water and sediment samples collected from the Zipaquirá salt mine in the Colombian Andes. Both isolates had non-spore-forming, Gram-stain-negative and motile cells that grew aerobically. The strains grew optimally at 30 °C, pH 7.0 and with 25 % NaCl (w/v). The isolates showed almost identical 16S rRNA gene sequences (99.0 % similarity). The predominant quinones of USBA-960T were Q-8, Q-7 and Q-9. The major cellular fatty acids were C19 : 0 cyclo ω8c, C18 : 0 and C16 : 0. According to 16S rRNA gene sequencing, the closest phylogenetic relatives are Salinisphaera species (similarity between 93.6 and 92.3 %), Abyssibacter profundi OUC007T (88.6 %) and Oceanococcus atlanticus 22II-S10r2T (88.7 %). In addition, the result of genome blast distance phylogeny analysis between strains USBA 874 and USBA 960T, Salinisphaera halophila (YIM 95161T), Salinisphaera shabanensis (E1L3AT), Salinisphaera orenii (MK-B5T) and Salinisphaera japonica (YTM-1T) was 18.5 %. Other in silico species delineation analyses also showed low identity such as ANIb and ANIm values (<69.0 and <84.0 % respectively), TETRA (<0.81) and AAI values (<0.67). Genome sequencing of USBA 960T revealed a genome size of 2.47 Mbp and a G+C content of 59.71 mol%. Phylogenetic analysis of strains USBA 874 and USBA 960T indicated that they formed a different lineage within the family Salinisphaeraceae . Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness values, along with identity at whole genome level, it can be concluded that strains USBA 960T and USBA 874 represent a novel genus of the family Salinisphaeraceae and the name Salifodinibacter halophilus gen. nov., sp. nov. is proposed. The type strain is USBA 960T (CMPUJ U095T=CECT 30006T).


2011 ◽  
Vol 61 (2) ◽  
pp. 330-333 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Duck-Chul Oh

A Gram-negative, yellow-pigmented, rod-shaped, strictly aerobic, non-flagellated, oxidase- and catalase-positive, marine bacterium, designated A2T, was isolated from a marine sponge, Hymeniacidon flavia, collected from the coast of Jeju Island, South Korea. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that strain A2T was a member of the family Flavobacteriaceae. Its closest relatives were Formosa agariphila KMM 3901T and Formosa algae KMM 3553T (96.99 and 96.98 % 16S rRNA gene sequence similarity, respectively). DNA–DNA relatedness between strain A2T and F. agariphila KMM 3901T and F. algae KMM 3553T was 14.1 and 26.8 %, respectively. The dominant fatty acids (>5 %) of strain A2T were iso-C15 : 0 (33.9 %), iso-C17 : 0 3-OH (20.8 %), iso-C15 : 1 G (10.5 %) and iso-C15 : 0 3-OH (6.1 %). The DNA G+C content of strain A2T was 36.0 mol% and the major respiratory quinone was MK-6. On the basis of phenotypic and phylogenetic analysis, strain A2T represents a novel species of the genus Formosa, for which the name Formosa spongicola sp. nov. is proposed. The type strain is A2T (=KCTC 22662T =DSM 22637T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3305-3312 ◽  
Author(s):  
Li Tuo ◽  
Lin Guo ◽  
Shao-Wei Liu ◽  
Jia-Meng Liu ◽  
Yu-Qin Zhang ◽  
...  

A Gram-stain-positive, aerobic, straight or slightly bent rod-shaped, non-motile, non-spore-forming bacterium, designated strain CC5-806T, was isolated from a soil sample collected from a wild karst cave in the Wulong region, Chongqing, PR China and examined using a polyphasic approach to clarify its taxonomic position. This bacterium did not produce substrate mycelium or aerial hyphae, and no diffusible pigments were observed on the media tested. Strain CC5-806T grew optimally without NaCl at 20 °C and at pH 7.0. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain CC5-806T belonged to the family Microbacteriaceae and showed the highest levels of 16S rRNA gene sequence similarities with Frigoribacterium endophyticum EGI 6500707T (97.56 %), Frigoribacterium faeni 801T (97.53 %) and Glaciihabitans tibetensis MP203T (97.42 %). Phylogenetic trees revealed that strain CC5-806T did not show a clear affiliation to any genus within the family Microbacteriaceae. The DNA G+C content of strain CC5-806T was 62.6 mol%. The cell-wall peptidoglycan contained l-lysine as a diagnostic diamino acid. The predominant menaquinones were MK-11, MK-10 and MK-9. Phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid, four unidentified phospholipids and other polar lipids were detected in the polar lipid extracts. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C14 : 0. On the basis of the phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, strain CC5-806T was distinguishable from phylogenetically related genera in the family Microbacteriaceae. It represents a novel species of a novel genus, for which the name Lysinibacter cavernae gen. nov., sp. nov. is proposed. The type strain is CC5-806T ( = DSM 27960T = CGMCC 1.14983T).


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 863-868 ◽  
Author(s):  
Maribel Farfán ◽  
María Jesús Montes ◽  
Ana M. Marqués

The taxonomic position of Sphingobacterium antarcticum has been revised by means of 16S rRNA gene sequences, DNA–DNA hybridization, and phenotypic and chemotaxonomic characteristics. All data previously reported, as well as the results of the present phylogenetic analysis, support that Sphingobacterium antarcticum is clearly a member of the genus Pedobacter , also affiliated with the family Sphingobacteriaceae . We propose that Sphingobacterium antarcticum (corrig. Shivaji et al. 1992) should be reclassified as Pedobacter antarcticus comb. nov.


2011 ◽  
Vol 61 (5) ◽  
pp. 1153-1159 ◽  
Author(s):  
Qing-Yi Xie ◽  
Cheng Wang ◽  
Rong Wang ◽  
Zhi Qu ◽  
Hai-Peng Lin ◽  
...  

A novel endophytic actinomycete, designated strain 202201T, was isolated from an Acanthus illicifolius root collected from the mangrove reserve zone in Hainan Province, China. Phylogenetic analysis based on 16S rRNA gene sequences suggested that strain 202201T fell within the family Micromonosporaceae. The strain formed an extensively branched substrate mycelium, which carried uneven warty-surfaced spores. Cell walls of strain 202201T contained meso-diaminopimelic acid and xylose, mannose, arabinose, ribose and glucose were detected as whole-cell sugars. The acyl type of the cell-wall polysaccharides was glycolyl. The major menaquinones were MK-9(H4), MK-9(H6), MK-9(H8) and MK-10(H4). The polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol mannoside and phosphatidylserine. The major cellular fatty acids were 10-methyl-C17 : 0, iso-C15 : 0, iso-C16 : 0 and C17 : 1ω8c. The DNA G+C content was 72.3 mol%. On the basis of the morphological and chemotaxonomic characteristics, phylogenetic analysis and characteristic patterns of 16S rRNA gene signature nucleotides, strain 202201T ( = CGMCC 4.5597T  = DSM 45430T) represents a novel species of a new genus within the family Micromonosporaceae, for which the name Jishengella endophytica gen. nov., sp. nov. is proposed.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4115-4119 ◽  
Author(s):  
Parisa Zarparvar ◽  
Mohammad Ali Amoozegar ◽  
Mahdi Moshtaghi Nikou ◽  
Peter Schumann ◽  
Antonio Ventosa

A halophilic actinomycete, strain R4S8T, was isolated from soil of Inche-Broun hypersaline wetland in the north of Iran. The isolate grew aerobically at temperatures of 30–50 °C (optimum 40 °C), pH 6–10 (optimum pH 7.0) and in the presence of 1–15 % (w/v) NaCl (optimum 3–5 %). It formed short and straight to moderately flexuous aerial mycelium without motile elements. The cell wall of strain R4S8T contained meso-diaminopimelic acid as the diamino acid without any diagnostic sugars. The polar lipid pattern consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylmonomethylethanolamine two unknown phospholipids and one unknown aminophospholipid. It synthesized anteiso-C15 : 0 (44.8 %), iso-C15 : 0 (28.8 %) and iso-C14 : 0 (8.5 %) as major fatty acids. MK-6 was the predominant respiratory quinone. The G+C content of the genomic DNA was 52.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain R4S8T belongs to the family Thermoactinomycetaceae and showed the closest 16S rRNA gene sequence similarity with Desmospora activa IMMIB L-1269T (95.5 %) and Marininema mesophilum SCSIO 10219T (95.3 %). On the basis of phylogenetic analysis and phenotypic characteristics, strain R4S8T represents a novel species in a new genus within the family Thermoactinomycetaceae , for which the name Salinithrix halophila gen. nov., sp. nov. is proposed. The type strain of the type species is R4S8T ( = IBRC-M 10813T = CECT 8506T).


Sign in / Sign up

Export Citation Format

Share Document