scholarly journals Poor Correlation between Pneumococcal IgG and IgM Titers and Opsonophagocytic Activity in Vaccinated Patients with Multiple Myeloma and Waldenstrom's Macroglobulinemia

2016 ◽  
Vol 23 (4) ◽  
pp. 379-385 ◽  
Author(s):  
Johanna Karlsson ◽  
Lucy Roalfe ◽  
Harriet Hogevik ◽  
Marta Zancolli ◽  
Björn Andréasson ◽  
...  

ABSTRACTPatients with multiple myeloma and other B cell disorders respond poorly to pneumococcal vaccination. Vaccine responsiveness is commonly determined by measuring pneumococcal serotype-specific antibodies by enzyme-linked immunosorbent assay (ELISA), by a functional opsonophagocytosis assay (OPA), or by both assays. We compared the two methods in vaccinated elderly patients with multiple myeloma, Waldenstrom's macroglobulinemia, and monoclonal gammopathy of undetermined significance (MGUS). Postvaccination sera from 45 patients (n= 15 from each patient group) and 15 control subjects were analyzed by multiplexed OPA for pneumococcal serotypes 4, 6B, 14, and 23F, and the results were compared to IgG and IgM antibody titers measured by ELISA. While there were significant correlations between pneumococcal OPA and IgG titers for all serotypes among the control subjects (correlation coefficients [r] between 0.51 and 0.85), no significant correlations were seen for any of the investigated serotypes in the myeloma group (r= −0.18 to 0.21) or in the group with Waldenstrom's macroglobulinemia (borderline significant correlations for 2 of 4 serotypes). The MGUS group resembled the control group by having good agreement between the two test methods for 3 of 4 serotypes (r= 0.53 to 0.80). Pneumococcal postvaccination IgM titers were very low in the myeloma patients compared to the other groups and did not correlate with the OPA results. To summarize, our data indicate that ELISA measurements may overestimate antipneumococcal immunity in elderly subjects with B cell malignancies and that a functional antibody test should be used specifically for myeloma and Waldenstrom's macroglobulinemia patients.

2015 ◽  
Vol 137 (5) ◽  
pp. 1076-1084 ◽  
Author(s):  
Frank Neumann ◽  
Michael Pfreundschuh ◽  
Klaus D. Preuss ◽  
Claudia Schormann ◽  
Carsten Zwick ◽  
...  

Blood ◽  
2020 ◽  
Author(s):  
Damien Roos-Weil ◽  
Brian Giacopelli ◽  
Marine Armand ◽  
Véronique Della Valle ◽  
Hussein Ghamlouch ◽  
...  

Epigenetic changes during B cell differentiation generates distinct DNA methylation signatures specific for B cell subsets, including memory B cells (MBCs) and plasma cells (PCs). Waldenström's macroglobulinemia (WM) is a complex B cell malignancy uniquely comprised of a mixture of lymphocytic and plasmacytic phenotypes. Here we integrated genome-wide DNA methylation, transcriptome, mutation and other phenotypic features of tumor cells from 35 MYD88-mutated WM patients in relation to normal plasma and B cell subsets. We discovered that WM patients naturally segregate into two groups according to DNA methylation patterns, related to normal MBC and PC profiles, and reminiscent of other memory and plasma cell-derived malignancies. Concurrent analysis of DNA methylation changes in normal and WM development were used to capture tumor-specific events, highlighting a selective reprogramming of enhancer regions in MBC-like WM and repressed and heterochromatic regions in PC-like WM. MBC-like WM hypomethylation was enriched in motifs belonging to PU.1, TCF3 and OCT2 transcription factors and involved elevated MYD88/TLR pathway activity. PC-like WM displayed marked global hypomethylation and selective overexpression of histone genes. Finally, WM subtypes exhibited differential genetic, phenotypic and clinical features. MBC-like WM harbored significantly more clonal CXCR4 mutations (P=0.015), deletion 13q (P=0.006), splenomegaly (P=0.02) and thrombocytopenia (P=0.004), while PC-like WM harbored more deletion 6q (P=0.012), gain 6p (P=0.033), had increased frequencies of IGHV3 genes (P=0.002), CD38 surface expression (P=4.1e-5), and plasmacytic differentiation features (P=0.008). Together our findings illustrate a novel approach to subclassify WM patients using patterns of DNA methylation and reveal divergent molecular signatures among WM patients.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2291-2291
Author(s):  
Stephen M. Ansell ◽  
Deanna M. Grote ◽  
Steven C. Ziesmer ◽  
Thomas E. Witzig ◽  
Robert A. Kyle ◽  
...  

Abstract Waldenstrom’s macroglobulinemia is a serious and frequently fatal illness, however many of the mechanisms leading to this disease are not yet known. It is clear, however, that there is dysregulation of the balance between cell proliferation and programmed cell death. BLyS (B-lymphocyte stimulator) is a newly identified TNF family member expressed by monocytes, macrophages, and dendritic cells. BLyS has been shown to be critical for maintenance of normal B cell development and homeostasis, and has been found to stimulate lymphocyte growth. BLyS is overexpressed in a variety of B-cell malignancies and has been shown to inhibit apoptosis in malignant B-cells. Studies of the effects of BLyS on B cell physiology have shown that it also regulates immunoglobulin secretion. To determine the relevance of the BLyS receptor-ligand system in Waldenstrom’s macroglobulinemia, we examined malignant B cells from 5 patients with Waldenstrom’s macroglobulinemia for their ability to bind soluble BLyS and for the expression of the known BLyS receptors, TACI, BAFF-R, or BCMA. The malignant B cells were found to bind BLyS and express BAFF-R and TACI. BCMA expression was undetectable. We then determined the expression of BLyS in bone marrow specimens from 5 patients with Waldenstrom’s macroglobulinemia by immunohistochemistry and compared it to the expression in 5 normal bone marrow specimens. The lymphoplasmacytic cell infiltrate in the bone marrow of patients with Waldenstrom’s macroglobulinemia showed significantly increased BLyS expression. We further determined the serum BLyS levels by ELISA in stored serum specimens from patients with Waldenstrom’s macroglobulinemia (n=20), and compared them to serum BLyS levels in other patients with lymphoplasmacytic lymphoma without elevated immunoglobulin levels (n=10) and to serum levels in normal controls (n=50). Serum BLyS levels in Waldenstrom’s patients (mean: 49.6ng/ml) as well as those in patients with lymphoplasmacytic lymphoma (mean; 46.7ng/ml) were significantly higher than normal controls (mean 12.6ng/ml). In conclusion, we have demonstrated that malignant B cells from patients with Waldenstrom’s macroglobulinemia express the receptors for BLyS and can bind soluble BLyS. Furthermore, we have found that serum BLyS levels are significantly elevated in patients with Waldenstrom’s macroglobulinemia when compared to controls. Strategies to inhibit BLyS may potentially have significant therapeutic efficacy in Waldenstrom’s macroglobulinemia.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 601-601
Author(s):  
Sherine F. Elsawa ◽  
Anne J. Novak ◽  
Deanna M. Grote ◽  
Steven C. Zeismer ◽  
Thomas E. Witzig ◽  
...  

Abstract Waldenstrom’s macroglobulinemia (WM) is a serious and frequently fatal disorder characterized by the production of a monoclonal IgM protein, a lymphoplasmacytic infiltrate in the bone marrow, and associated symptoms including anemia, lymphadenopathy and hyperviscosity. Many of the mechanisms leading to this disease are not yet known. It is clear, however, that there is dysregulation of the balance between cell proliferation and programmed cell death. BLyS (B-lymphocyte stimulator) is a TNF family member expressed by monocytes, neutrophils, macrophages, and dendritic cells. BLyS has been shown to be critical for maintenance of normal B cell development and homeostasis, and has been found to stimulate lymphocyte growth. BLyS is overexpressed in a variety of B-cell malignancies and has been shown to inhibit apoptosis in malignant B-cells. Studies of the effects of BLyS on B cell physiology have shown that it also regulates immunoglobulin secretion. In previous work, we have shown that malignant B cells from patients with WM are able to bind soluble BLyS and variably express the BLyS receptors, BAFF-R, TACI and BCMA. We also found expression of BLyS in bone marrow specimens by immunohistochemistry and elevated serum BLyS levels in patients with WM. The goal of this study was to determine the functional role of BLyS-receptor ligand system in Waldenstrom’s macroglobulinemia and its relevance to the increased immunoglobulin production seen in this disease. Using cells from WM patients, we first examined the ability of BLyS to increase the secretion of IgM by malignant B cells. BLyS, alone or in combination with cytokines that induce plasmacytic differentiation and immunoglobulin production (IL-2, IL-6, IL-10 and IL-12), was found to increase IgM secretion by malignant B cells. Mean baseline IgM levels significantly increased in cells treated with BLyS (p=0.03), cytokines (p=0.0002) and a combination of BLyS and cytokines (p<0.0001). We then determined the effect of BLyS on the survival of malignant B cells using Annexin-V/PI staining. Compared to cells cultured in media alone, BLyS was found to increase viability of malignant B cells from WM patients. Cell viability was normalized relative to the media-alone control and the median relative viability increased significantly compared to controls (median increase 41.2%; range 8 – 46%). Next, we examined the ability of BLyS to modulate cell proliferation using thymidine incorporation. Using WM patient samples, BLyS was found to significantly enhance the proliferation of malignant B cells (p=0.0002). Furthermore, addition of anti-Ig antibody further enhanced the ability of BLyS to promote the proliferation of malignant B cells (p<0.0001). In summary, we have demonstrated that BLyS enhances IgM secretion by malignant B cells from patients with Waldenstrom’s macroglobulinemia. We have also demonstrated the ability of BLyS to enhance the survival and proliferation of malignant B cells. Strategies to inhibit BLyS may potentially have therapeutic efficacy in Waldenstrom’s macroglobulinemia.


2005 ◽  
Vol 5 (4) ◽  
pp. 217-219 ◽  
Author(s):  
Jitra Kriangkum ◽  
Brian J. Taylor ◽  
Tony Reiman ◽  
Andrew R. Belch ◽  
Linda M. Pilarski

Sign in / Sign up

Export Citation Format

Share Document