scholarly journals Disruption of Histone Deacetylase Gene RPD3 Accelerates PHO5 Activation Kinetics through Inappropriate Pho84p Recycling

2005 ◽  
Vol 4 (8) ◽  
pp. 1387-1395 ◽  
Author(s):  
Sriwan Wongwisansri ◽  
Paul J. Laybourn

ABSTRACT The histone deacetylase Rpd3p functions as a transcriptional repressor of a diverse set of genes, including PHO5. Here we describe a novel role for RPD3 in the regulation of phosphate transporter Pho84p retention in the cytoplasmic membrane. We show that under repressing conditions (with Pi), PHO5 expression is increased in a pho4Δ rpd3Δ strain, demonstrating PHO regulatory pathway independence. However, the effect of RPD3 disruption on PHO5 activation kinetics is dependent on the PHO regulatory pathway. Upon switching to activating conditions (without Pi), PHO5 transcripts accumulated more rapidly in rpd3Δ cells. This more rapid response correlates with a defect in phosphate uptake due to premature recycling of Pho84p, the high-affinity H+/PO4 3− symporter. Thus, RPD3 also participates in PHO5 regulation through a previously unidentified effect on maintenance of high-affinity phosphate uptake during phosphate starvation. We propose that Rpd3p has a negative role in the regulation of Pho84p endocytosis.

2000 ◽  
Vol 182 (17) ◽  
pp. 5017-5019 ◽  
Author(s):  
Johanna Pattison-Granberg ◽  
Bengt L. Persson

ABSTRACT Studies of the high-affinity phosphate transporters in the yeastSaccharomyces cerevisiae using mutant strains lacking either the Pho84 or the Pho89 permease revealed that the transporters are differentially regulated. Although both genes are induced by phosphate starvation, activation of the Pho89 transporter precedes that of the Pho84 transporter early in the growth phase in a way which may possibly reflect a fine tuning of the phosphate uptake process relative to the availability of external phosphate.


2006 ◽  
Author(s):  
Kashchandra G. Raghothama ◽  
Avner Silber ◽  
Avraham Levy

Abstract: Phosphorus is one of the least available macronutrient in the soil. The high affinity phosphate transporters are known to be associated with phosphate acquisition under natural conditions. Due to unique interactions of phosphate with soil particles, up to 80% of the applied phosphates may be fixed forcing the farmers to apply 4 to 5 times the fertilizers necessary for crop production. Efficient uptake and utilization of this essential nutrient is essential for sustainability and profitability of agriculture. Many predictions point to utilization/exhaustion of high quality phosphate rocks within this century. This calls for efforts to improve the ability of plants to acquire and utilize limiting sources of phosphate in the rhizosphere. Two important molecular and biochemical components associated with phosphate efficiency are phosphate transporters and phosphatases. This research project is aimed at defining molecular determinants of phosphate acquisition and utilization in addition to generating phosphate uptake efficient plants. The main objectives of the project were; Creation and analysis of transgenic tomato plants over-expressing phosphatases and transporters Characterization of the recently identified members (LePT3 and LePT4) of the Pi transporter family Generate molecular tools to study genetic responses of plants to Pi deficiency During the project period we have successfully identified and characterized a novel phosphate transporter associated with mycorrhizal symbiosis. The expression of this transporter increases with mycorrhizal symbiosis. A thorough characterization of mutant tomato lacking the expression of this gene revealed the biological significance of LePT3 and another novel gene LePT4. In addition we have isolated and characterized several phosphate starvation induced genes from tomato using a combination of differential and subtractive mRNA hybridization techniques. One of the genes, LePS2 belongs to the family of phospho-protein phosphatase. The functionality of the recombinant protein was determined using synthetic phosphor-peptides. Over expression of this gene in tomato resulted in significant changes in growth, delay in flowering and senescence. It is anticipated that phospho-protein phosphatase may have regulatory role in phosphate deficiency responses of plants. In addition a novel phosphate starvation induced glycerol 3-phosphate permease gene family was also characterized. Two doctoral research students are continuing the characterization and functional analysis of these genes. Over expression of high affinity phosphate transporters in tobacco showed increased phosphate content under hydroponic conditions. There is growing evidence suggesting that high affinity phosphate transporters are crucial for phosphate acquisition even under phosphate sufficiency conditions. This project has helped train several postdoctoral fellows and graduate students. Further analysis of transgenic plants expressing phosphatases and transporters will not only reveal the biological function of the targeted genes but also result in phosphate uptake and utilization efficient plants.  


2012 ◽  
Vol 159 (4) ◽  
pp. 1571-1581 ◽  
Author(s):  
Shubin Sun ◽  
Mian Gu ◽  
Yue Cao ◽  
Xinpeng Huang ◽  
Xiao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document