scholarly journals Yersiniabactin Is a Virulence Factor for Klebsiella pneumoniae during Pulmonary Infection

2007 ◽  
Vol 75 (3) ◽  
pp. 1463-1472 ◽  
Author(s):  
Matthew S. Lawlor ◽  
Christopher O'Connor ◽  
Virginia L. Miller

ABSTRACT Iron acquisition systems are essential for the in vivo growth of bacterial pathogens. Despite the epidemiological importance of Klebsiella pneumoniae, few experiments have examined the importance of siderophores in the pathogenesis of this species. A previously reported signature-tagged mutagenesis screen identified an attenuated strain that featured an insertional disruption in ybtQ, which encodes a transporter for the siderophore yersiniabactin. We used this finding as a starting point to evaluate the importance of siderophores in the physiology and pathogenesis of K. pneumoniae. Isogenic strains carrying in-frame deletions in genes required for the synthesis of either enterobactin or yersiniabactin were constructed, and the growth of these mutants was examined both in vitro and in vivo using an intranasal infection model. The results suggest divergent functions for each siderophore in different environments, with enterobactin being more important for growth in vitro under iron limitation than in vivo and the reverse being true for the yersiniabactin locus. These observations represent the first examination of isogenic mutants in iron acquisition systems for K. pneumoniae and may indicate that the acquisition of nonenterobactin siderophores is an important step in the evolution of virulent enterobacterial strains.

2018 ◽  
Vol 73 (6) ◽  
pp. 1604-1610 ◽  
Author(s):  
Sue C Nang ◽  
Faye C Morris ◽  
Michael J McDonald ◽  
Mei-Ling Han ◽  
Jiping Wang ◽  
...  

Abstract Objectives The discovery of mobile colistin resistance mcr-1, a plasmid-borne polymyxin resistance gene, highlights the potential for widespread resistance to the last-line polymyxins. In the present study, we investigated the impact of mcr-1 acquisition on polymyxin resistance and biological fitness in Klebsiella pneumoniae. Methods K. pneumoniae B5055 was used as the parental strain for the construction of strains carrying vector only (pBBR1MCS-5) and mcr-1 recombinant plasmids (pmcr-1). Plasmid stability was determined by serial passaging for 10 consecutive days in antibiotic-free LB broth, followed by patching on gentamicin-containing and antibiotic-free LB agar plates. Lipid A was analysed using LC–MS. The biological fitness was examined using an in vitro competition assay analysed with flow cytometry. The in vivo fitness cost of mcr-1 was evaluated in a neutropenic mouse thigh infection model. Results Increased polymyxin resistance was observed following acquisition of mcr-1 in K. pneumoniae B5055. The modification of lipid A with phosphoethanolamine following mcr-1 addition was demonstrated by lipid A profiling. The plasmid stability assay revealed the instability of the plasmid after acquiring mcr-1. Reduced in vitro biological fitness and in vivo growth were observed with the mcr-1-carrying K. pneumoniae strain. Conclusions Although mcr-1 confers a moderate level of polymyxin resistance, it is associated with a significant biological fitness cost in K. pneumoniae. This indicates that mcr-1-mediated resistance in K. pneumoniae could be attenuated by limiting the usage of polymyxins.


2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


2007 ◽  
Vol 51 (4) ◽  
pp. 1481-1486 ◽  
Author(s):  
C. Andrew DeRyke ◽  
Mary Anne Banevicius ◽  
Hong Wei Fan ◽  
David P. Nicolau

ABSTRACT The purpose of this study was to examine the in vivo efficacies of meropenem and ertapenem against extended-spectrum-β-lactamase (ESBL)-producing isolates with a wide range of MICs. Human-simulated dosing regimens in mice were designed to approximate the free drug percent time above the MIC (fT>MIC) observed for humans following meropenem at 1 g every 8 h and ertapenem at 1 g every 24 h. An in vivo neutropenic mouse thigh infection model was used to examine the bactericidal effects against 31 clinical ESBL Escherichia coli and Klebsiella pneumoniae isolates and 2 non-ESBL isolates included for comparison at a standard 105 inoculum. Three isolates were examined at a high 107 inoculum as well. Meropenem displayed greater in vitro potency, with a median MIC (range) (μg/ml) of 0.125 (0.03 to 32), than did ertapenem, with 0.5 (0.012 to 128). Seven of the 31 ESBL isolates were removed from the efficacy analysis due to their inability to establish infection in the mouse model. When MICs were ≤1.5 μg/ml for ertapenem (≤0.5 μg/ml for meropenem), similar reductions in CFU (≈ 2-log kill) were observed for both ertapenem (fT>MIC ≥ 23%) and meropenem (fT>MIC ≥ 75%). Ertapenem showed bacterial regrowth for seven of eight isolates, with MICs of ≥2 μg/ml (fT>MIC ≤ 20%), while meropenem displayed antibacterial potency that varied from a static effect to a 1-log bacterial reduction in these isolates (fT>MIC = 30 to 65%). At a 107 inoculum, both agents eradicated bacteria due to adequate exposures (fT>MIC = 20 to 45%). Due to low MICs, no difference in bacterial kill was noted for the majority of ESBL isolates tested. However, for isolates with raised ertapenem MICs of ≥2 μg/ml, meropenem displayed sustained efficacy due to its greater in vitro potency and higher resultant fT>MIC.


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Su Mon Aye ◽  
Irene Galani ◽  
Heidi Yu ◽  
Jiping Wang ◽  
Ke Chen ◽  
...  

ABSTRACT Resistance to polymyxin antibiotics is increasing. Without new antibiotic classes, combination therapy is often required. We systematically investigated bacterial killing with polymyxin-based combinations against multidrug-resistant (including polymyxin-resistant), carbapenemase-producing Klebsiella pneumoniae. Monotherapies and double- and triple-combination therapies were compared to identify the most efficacious treatment using static time-kill studies (24 h, six isolates), an in vitro pharmacokinetic/pharmacodynamic model (IVM; 48 h, two isolates), and the mouse thigh infection model (24 h, six isolates). In static time-kill studies, all monotherapies (polymyxin B, rifampin, amikacin, meropenem, or minocycline) were ineffective. Initial bacterial killing was enhanced with various polymyxin B-containing double combinations; however, substantial regrowth occurred in most cases by 24 h. Most polymyxin B-containing triple combinations provided greater and more sustained killing than double combinations. Standard dosage regimens of polymyxin B (2.5 mg/kg of body weight/day), rifampin (600 mg every 12 h), and amikacin (7.5 mg/kg every 12 h) were simulated in the IVM. Against isolate ATH 16, no viable bacteria were detected across 5 to 25 h with triple therapy, with regrowth to ∼2-log10 CFU/ml occurring at 48 h. Against isolate BD 32, rapid initial killing of ∼3.5-log10 CFU/ml at 5 h was followed by a slow decline to ∼2-log10 CFU/ml at 48 h. In infected mice, polymyxin B monotherapy (60 mg/kg/day) generally was ineffective. With triple therapy (polymyxin B at 60 mg/kg/day, rifampin at 120 mg/kg/day, and amikacin at 300 mg/kg/day), at 24 h there was an ∼1.7-log10 CFU/thigh reduction compared to the starting inoculum for all six isolates. Our results demonstrate that the polymyxin B-rifampin-amikacin combination significantly enhanced in vitro and in vivo bacterial killing, providing important information for the optimization of polymyxin-based combinations in patients.


2016 ◽  
Vol 60 (5) ◽  
pp. 3001-3006 ◽  
Author(s):  
Akihiro Morinaka ◽  
Yuko Tsutsumi ◽  
Keiko Yamada ◽  
Yoshihiro Takayama ◽  
Shiro Sakakibara ◽  
...  

ABSTRACTGram-negative bacteria are evolving to produce β-lactamases of increasing diversity that challenge antimicrobial chemotherapy. OP0595 is a new diazabicyclooctane serine β-lactamase inhibitor which acts also as an antibiotic and as a β-lactamase-independent β-lactam “enhancer” againstEnterobacteriaceae. Here we determined the optimal concentration of OP0595 in combination with piperacillin, cefepime, and meropenem, in addition to the antibacterial activity of OP0595 alone and in combination with cefepime, inin vitrotime-kill studies and anin vivoinfection model against five strains of CTX-M-15-positiveEscherichia coliand five strains of KPC-positiveKlebsiella pneumoniae. An OP0595 concentration of 4 μg/ml was found to be sufficient for an effective combination with all three β-lactam agents. In bothin vitrotime-kill studies and anin vivomodel of infection, cefepime-OP0595 showed stronger efficacy than cefepime alone against all β-lactamase-positive strains tested, whereas OP0595 alone showed weaker or no efficacy. Taken together, these data indicate that combinational use of OP0595 and a β-lactam agent is important to exert the antimicrobial functions of OP0595.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
S. M. Stainton ◽  
M. L. Monogue ◽  
D. P. Nicolau

ABSTRACT Recent findings have identified Klebsiella pneumoniae strains that are pan-β-lactam susceptible (PBL-S) but piperacillin-tazobactam resistant (TZP-R) in vitro. We assessed the efficacy of a humanized exposure of piperacillin-tazobactam (TZP) against 12 TZP-R/PBL-S K. pneumoniae isolates in an immunocompromised murine lung infection model. Discordance between the in vitro resistance profile and the in vivo efficacy of human-simulated TZP exposures against this phenotypic profile was observed. Additional studies are required to define the clinical implications of these TZP-R/PBL-S strains.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
M. L. Monogue ◽  
L. M. Abbo ◽  
R. Rosa ◽  
J. F. Camargo ◽  
O. Martinez ◽  
...  

ABSTRACT The management of infections with New Delhi metallo-beta-lactamase-1 (NDM)-producing bacteria remains clinically challenging given the multidrug resistant (MDR) phenotype associated with these bacteria. Despite resistance in vitro, ceftazidime-avibactam previously demonstrated in vivo activity against NDM-positive Enterobacteriaceae. Herein, we observed in vitro synergy with ceftazidime-avibactam and aztreonam against an MDR Klebsiella pneumoniae harboring NDM. In vivo, humanized doses of ceftazidime-avibactam monotherapy resulted in >2 log10 CFU bacterial reduction; therefore, no in vivo synergy was observed.


2006 ◽  
Vol 74 (8) ◽  
pp. 4918-4921 ◽  
Author(s):  
Tracey L. Campbell ◽  
James Henderson ◽  
David E. Heinrichs ◽  
Eric D. Brown

ABSTRACT Gene products required for in vivo growth and survival of Staphylococcus aureus and other pathogens represent new targets for antimicrobial chemotherapy. In this study we created a Staphylococcus aureus yjeQ deletion strain and tested its virulence using a mouse kidney abscess infection model. The yjeQ deletion strain was compromised for growth in vitro and severely attenuated for virulence. We concluded that yjeQ is an attractive and novel new drug target.


2004 ◽  
Vol 72 (2) ◽  
pp. 701-708 ◽  
Author(s):  
Amanda J. Beddek ◽  
Brian J. Sheehan ◽  
Janine T. Bossé ◽  
Andrew N. Rycroft ◽  
J. Simon Kroll ◽  
...  

ABSTRACT Iron acquisition in vivo by Actinobacillus pleuropneumoniae depends upon a functional TonB system. Tonpitak et al. (W. Tonpitak, S. Thiede, W. Oswald, N. Baltes, and G.-F. Gerlach, Infect. Immun. 68:1164-1170, 2000) have described one such system, associated with tbpBA encoding the transferrin receptor, and here we report a second, termed tonB2. This gene cluster (exbB2-exbD2-tonB2) is highly homologous to those in other Pasteurellaceae, unlike the earlier system described (now termed tonB1), suggesting that it is the indigenous system for this organism. Both tonB2 and tonB1 are upregulated upon iron restriction. TonB2, but not TonB1, was found to be essential for growth in vitro when the sole source of iron was hemin, porcine hemoglobin, or ferrichrome. In the case of iron provided as iron-loaded porcine transferrin, neither tonB mutant was viable. The tonB1 phenotype could be explained by a polar effect of the mutation on transcription of downstream tbp genes. We propose that TonB2 is crucial for the acquisition of iron provided in this form, interacting with accessory proteins of the TonB1 system that have been demonstrated to be necessary by Tonpitak et al. TonB2 appears to play a much more important role in A. pleuropneumoniae virulence than TonB1. In an acute porcine infection model, the tonB2 mutant was found to be highly attenuated, while the tonB1 mutant was not. We hypothesize that acquisition of the tonB1-tbp gene cluster confers a biological advantage through its capacity to utilize transferrin-iron but that TonB1 itself plays little or no part in this process.


Sign in / Sign up

Export Citation Format

Share Document