scholarly journals Stabilization of a Plasmid Coding for a Heterologous Antigen in Salmonella enterica Serotype Typhi Vaccine Strain CVD908-htrA by Using Site-Specific Recombination

2006 ◽  
Vol 74 (7) ◽  
pp. 4383-4386 ◽  
Author(s):  
Jonathan C. Stephens ◽  
Michael J. Darsley ◽  
Arthur K. Turner

ABSTRACTA gene cassette incorporating thecrs-rsdsite-specific recombination system from theSalmonella entericasubsp.entericaserovar Dublin virulence plasmid improved the inheritance inS. entericaserotype Typhi strain CVD908-htrAof a multicopy plasmid expression vector. Use of this recombination cassette may improve expression of heterologous antigens from multicopy plasmid expression vectors in attenuated bacterial vaccine strains.

2012 ◽  
Vol 41 (2) ◽  
pp. e37-e37 ◽  
Author(s):  
Madina Karimova ◽  
Josephine Abi-Ghanem ◽  
Nicolas Berger ◽  
Vineeth Surendranath ◽  
Maria Teresa Pisabarro ◽  
...  

2002 ◽  
Vol 184 (18) ◽  
pp. 5187-5193 ◽  
Author(s):  
M. Victoria Francia ◽  
Don B. Clewell

ABSTRACT The small multicopy plasmid pAMα1 (9.75 kb) encoding tetracycline resistance in Enterococcus faecalis is known to generate tandem repeats of a 4.1-kb segment carrying tet(L) when cells are grown extensively in the presence of tetracycline. Here we show that the initial (rate-limiting) step involves a site-specific recombination event involving plasmid-encoded relaxase activity acting at two recombination sequences (RS1 and RS2) that flank the tet determinant. We also present the complete nucleotide sequence of pAMα1.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mohammed Radhi Mohaisen ◽  
Alan John McCarthy ◽  
Evelien M. Adriaenssens ◽  
Heather Elizabeth Allison

2002 ◽  
Vol 184 (1) ◽  
pp. 177-182 ◽  
Author(s):  
Szabolcs Semsey ◽  
Béla Blaha ◽  
Krisztián Köles ◽  
László Orosz ◽  
Péter P. Papp

ABSTRACT The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.


Sign in / Sign up

Export Citation Format

Share Document