parasite strains
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Viviane Corrêa Santos ◽  
Antonio Edson Rocha Oliveira ◽  
Augusto César Broilo Campos ◽  
João Luís Reis-Cunha ◽  
Daniella Castanheira Bartholomeu ◽  
...  

AbstractCruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257219
Author(s):  
Omarine N. Nlinwe ◽  
Ebenezer A. Ofori ◽  
Kwadwo Akyea-Mensah ◽  
Eric Kyei-Baafour ◽  
Harini Ganeshan ◽  
...  

Antigen polymorphisms in essential malarial antigens are a key challenge to the design and development of broadly effective malaria vaccines. The effect of polymorphisms on antibody responses is fairly well studied while much fewer studies have assessed this for T cell responses. This study investigated the effect of allelic polymorphisms in the malarial antigen apical membrane antigen 1 (AMA1) on ex vivo T cell-specific IFN-γ responses in subjects with lifelong exposure to malaria. Human leukocyte antigen (HLA) class I-restricted peptides from the 3D7 clone AMA1 were bioinformatically predicted and those with variant amino acid positions used to select corresponding allelic sequences from the 7G8, FVO, FC27 and tm284 parasite strains. A total of 91 AMA1 9-10mer peptides from the five parasite strains were identified, synthesized, grouped into 42 allele sets and used to stimulate PBMCs from seven HLA class 1-typed subjects in IFN-γ ELISpot assays. PBMCs from four of the seven subjects (57%) made positive responses to 18 peptides within 12 allele sets. Fifty percent of the 18 positive peptides were from the 3D7 parasite variant. Amino acid substitutions that were associated with IFN-γ response abrogation were more frequently found at positions 1 and 6 of the tested peptides, but substitutions did not show a clear pattern of association with response abrogation. Thus, while we show some evidence of polymorphisms affecting T cell response induction, other factors including TCR recognition of HLA-peptide complexes may also be at play.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ebenezer A. Ofori ◽  
John K. A. Tetteh ◽  
Augustina Frimpong ◽  
Harini Ganeshan ◽  
Maria Belmonte ◽  
...  

Abstract Background Malaria eradication requires a combined effort involving all available control tools, and these efforts would be complemented by an effective vaccine. The antigen targets of immune responses may show polymorphisms that can undermine their recognition by immune effectors and hence render vaccines based on antigens from a single parasite variant ineffective against other variants. This study compared the influence of allelic polymorphisms in Plasmodium falciparum apical membrane antigen 1 (PfAMA1) peptide sequences from three strains of P. falciparum (3D7, 7G8 and FVO) on their function as immunodominant targets of T cell responses in high and low malaria transmission communities in Ghana. Methods Peripheral blood mononuclear cells (PBMCs) from 10 subjects from a high transmission area (Obom) and 10 subjects from a low transmission area (Legon) were tested against 15 predicted CD8 + T cell minimal epitopes within the PfAMA1 antigen of multiple parasite strains using IFN-γ ELISpot assay. The peptides were also tested in similar assays against CD8 + enriched PBMC fractions from the same subjects in an effort to characterize the responding T cell subsets. Results In assays using unfractionated PBMCs, two subjects from the high transmission area, Obom, responded positively to four (26.7%) of the 15 tested peptides. None of the Legon subject PBMCs yielded positive peptide responses using unfractionated PBMCs. In assays with CD8 + enriched PBMCs, three subjects from Obom made positive recall responses to six (40%) of the 15 tested peptides, while only one subject from Legon made a positive recall response to a single peptide. Overall, 5 of the 20 study subjects who had positive peptide-specific IFN-γ recall responses were from the high transmission area, Obom. Furthermore, while subjects from Obom responded to peptides in PfAMA1 from multiple parasite strains, one subject from Legon responded to a peptide from 3D7 strain only. Conclusions The current data demonstrate the possibility of a real effect of PfAMA1 polymorphisms on the induction of T cell responses in malaria exposed subjects, and this effect may be more pronounced in communities with higher parasite exposure.


2021 ◽  
Author(s):  
Viviane Corrêa Santos ◽  
Antonio Edson Rocha Oliveira ◽  
Augusto César Broilo Campos ◽  
João Luís Reis-Cunha ◽  
Daniella Castanheira Bartholomeu ◽  
...  

Abstract Cruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Yakubu Jibira ◽  
Elizabeth Cudjoe ◽  
Frederick M. Tei-Maya ◽  
Benjamin Ayensu ◽  
Linda E. Amoah

Background. Drug resistance in malaria is a global problem, with reports of Plasmodium parasites resistant to the current first-line antimalarial drug, artemisinin, expanding from Southeast Asia to Africa. There is therefore an urgent need to identify new drug candidates that will be effective against the existing malaria parasites. Drug combination therapy presents a myriad of advantages over monotherapy including delayed onset of resistance, potentiation, and synergism. This present study explored the effectiveness of combinations of aqueous extracts of Alchornea cordifolia (A. cordifolia) and Mangifera indica (M. indica) at clearing both laboratory and field isolates of P. falciparum. Methods. Synchronized ring stage cultures of field (FA08) and laboratory strains (NF54 and CamWT_C580Y) of P. falciparum were subjected to combinations of different concentrations and ratios of aqueous extracts of A. cordifolia and M. indica. The growth inhibition of the individual plant extracts and their combinatory effects were studied in vitro using SYBR Green I drug assay. Results. The A. cordifolia extract exhibited 50% inhibitory concentration (IC50) of 2.71, 7.80, and 3.56 μg/mL against the NF54, CamWT_C580Y, and FA08 parasite strains, respectively. Mangifera indica exhibited IC50 of 18.11, 20.08, and 10.23 μg/mL against the NF54, CamWT_C580Y, and FA08 parasite strains, respectively. Additive, synergistic and antagonistic interactions were observed at different combinations of A. cordifolia and M. indica extracts. Conclusion. A combination product containing A. cordifolia and M. indica has the potential to serve as an effective antimalarial as majority of the tested combinations of aqueous extracts of A. cordifolia and M. indica extracts exhibited synergistic effects in vitro against the NF54, CamWT_C580Y, and FA08 P. falciparum strains.


2020 ◽  
Vol 9 (18) ◽  
Author(s):  
Inmaculada Gómez ◽  
Alberto Rastrojo ◽  
Francisco José Sanchez-Luque ◽  
Fabián Lorenzo-Díaz ◽  
Francisco Macías ◽  
...  

Trypanosoma cruzi parasite strains are classified into six lineages (discrete typing units TcI to TcVI). The broad genetic diversity of T. cruzi strains has an influence on the development of the host response and pathogenesis, as well as drug susceptibility. Here, the draft genome of the T. cruzi B. M. López strain (TcIa) is reported.


2019 ◽  
Author(s):  
Qiuling Wang ◽  
L. David Sibley

AbstractToxoplasmais a widespread parasite of animals including many rodents that are a natural part of the transmission cycle between cats, which serve as the definitive host. Although wild rodents, including house mice, are relatively resistant, laboratory mice are highly susceptible to infection. As such, laboratory mice and have been used to compare pathogenesis of natural variants, and to evaluate the contributions of both host and parasite genes to infection. Protocols are provided here for evaluating acute and chronic infection with different parasite strains in laboratory mice. These protocols should provide uniform standards for evaluating natural variants and attenuated mutants and for comparing outcomes across different studies and between different laboratories.


Sign in / Sign up

Export Citation Format

Share Document