scholarly journals Evaluation of Fab and F(ab′)2 Fragments and Isotype Variants of a Recombinant Human Monoclonal Antibody against Shiga Toxin 2

2010 ◽  
Vol 78 (3) ◽  
pp. 1376-1382 ◽  
Author(s):  
Donna E. Akiyoshi ◽  
Abhineet S. Sheoran ◽  
Curtis M. Rich ◽  
L. Richard ◽  
Susan Chapman-Bonofiglio ◽  
...  

ABSTRACT 5C12 HuMAb is a human monoclonal antibody against the A subunit of Shiga toxin 2 (Stx2). We have previously shown that 5C12 HuMAb effectively neutralizes the cytotoxic effects of this toxin by redirecting its transport within the cell and also by neutralizing the toxin's ability to inhibit protein synthesis. The 5C12 HuMAb and its recombinant IgG1 version protect mice at a dose of 0.6 μg against a lethal challenge of Stx2. The contribution of the Fc region to this observed neutralization activity of the 5C12 antibody against Stx2 was investigated in this study. Using recombinant DNA technology, 5C12 isotype variants (IgG1, IgG2, IgG3, and IgG4) and antibody fragments [Fab, F(ab′)2] were expressed in Chinese hamster ovary cells and evaluated in vitro and in vivo. All four 5C12 isotype variants showed protection in vitro, with the IgG3 and IgG4 variants showing the highest protection in vivo. The Fab and F(ab′)2 fragments also showed protection in vitro but no protection in the mouse toxicity model. Similar results were obtained for a second HuMAb (5H8) against the B subunit of Stx2. The data suggest the importance of the Fc region for neutralization activity, but it is not clear if this is related to the stability of the full-length antibody or if the Fc region is required for effective elimination of the toxin from the body.

2012 ◽  
Vol 31 (6) ◽  
pp. 584-594 ◽  
Author(s):  
Shayne C. Gad ◽  
Kelly L. Sharp ◽  
Charles Montgomery ◽  
J. Donald Payne ◽  
Glenn P. Goodrich

Gold nanoshells (155 nm in diameter with a coating of polyethylene glycol 5000) were evaluated for preclinical biocompatibility, toxicity, and biodistribution as part of a program to develop an injectable device for use in the photothermal ablation of tumors. The evaluation started with a complete good laboratory practice (GLP) compliant International Organization for Standardization (ISO)-10993 biocompatibility program, including cytotoxicity, pyrogenicity (US Pharmacopeia [USP] method in the rabbit), genotoxicity (bacterial mutagenicity, chromosomal aberration assay in Chinese hamster ovary cells, and in vivo mouse micronucleus), in vitro hemolysis, intracutaneous reactivity in the rabbit, sensitization (in the guinea pig maximization assay), and USP/ISO acute systemic toxicity in the mouse. There was no indication of toxicity in any of the studies. Subsequently, nanoshells were evaluated in vivo by intravenous (iv) infusion using a trehalose/water solution in a series of studies in mice, Sprague-Dawley rats, and Beagle dogs to assess toxicity for time durations of up to 404 days. Over the course of 14 GLP studies, the gold nanoshells were well tolerated and, when injected iv, no toxicities or bioincompatibilities were identified.


2018 ◽  
Vol 29 (6) ◽  
pp. 1649-1661 ◽  
Author(s):  
Yi Yang ◽  
Harriet Denton ◽  
Owen R. Davies ◽  
Kate Smith-Jackson ◽  
Heather Kerr ◽  
...  

Background C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway of complement activation, and treatment options for C3G remain limited. Complement factor H (FH) is a potent regulator of the alternative pathway and might offer a solution, but the mass and complexity of FH makes generation of full-length FH far from trivial. We previously generated a mini-FH construct, with FH short consensus repeats 1–5 linked to repeats 18–20 (FH1–5^18–20), that was effective in experimental C3G. However, the serum t1/2 of FH1–5^18–20 was significantly shorter than that of serum-purified FH.Methods We introduced the oligomerization domain of human FH-related protein 1 (denoted by R1–2) at the carboxy or amino terminus of human FH1–5^18–20 to generate two homodimeric mini-FH constructs (FHR1–2^1–5^18–20 and FH1–5^18–20^R1–2, respectively) in Chinese hamster ovary cells and tested these constructs using binding, fluid-phase, and erythrocyte lysis assays, followed by experiments in FH-deficient Cfh−/− mice.Results FHR1–2^1–5^18–20 and FH1–5^18–20^R1–2 homodimerized in solution and displayed avid binding profiles on clustered C3b surfaces, particularly FHR1–2^1–5^18–20. Each construct was >10-fold more effective than FH at inhibiting cell surface complement activity in vitro and restricted glomerular basement membrane C3 deposition in vivo significantly better than FH or FH1–5^18–20. FH1–5^18–20^R1–2 had a C3 breakdown fragment binding profile similar to that of FH, a >5-fold increase in serum t1/2 compared with that of FH1–5^18–20, and significantly better retention in the kidney than FH or FH1–5^18–20.Conclusions FH1–5^18–20^R1–2 may have utility as a treatment option for C3G or other complement-mediated diseases.


Toxicon ◽  
2013 ◽  
Vol 75 ◽  
pp. 216
Author(s):  
E. Girard ◽  
P. Villeneuve ◽  
V. Devos ◽  
A.S. Dezetter ◽  
A. Fontayne ◽  
...  

1985 ◽  
Vol 101 (3) ◽  
pp. 755-765 ◽  
Author(s):  
T J Mitchison ◽  
M W Kirschner

We have isolated chromosomes from Chinese hamster ovary cells arrested in mitosis with vinblastine and examined the interactions of their kinetochores with purified tubulin in vitro. The kinetochores nucleate microtubule (MT) growth with complex kinetics. After an initial lag phase, MTs are continuously nucleated with both plus and minus ends distally localized. This mixed polarity seems inconsistent with the formation of an ordered, homopolar kinetochore fiber in vivo. As isolated from vinblastine-arrested cells, kinetochores contain no bound tubulin. The kinetochores of chromosomes isolated from colcemid-arrested cells or of chromosomes incubated with tubulin in vitro are brightly stained after anti-tubulin immunofluorescence. This bound tubulin is probably not in the form of MTs. It is localized to the corona region by immunoelectron microscopy, where it may play a role in MT nucleation in vitro.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1788-1788
Author(s):  
Yiwen Li ◽  
Hongli Li ◽  
Mei-Nai Wang ◽  
Rajiv Bassi ◽  
Dale Ludwig ◽  
...  

Abstract The receptor tyrosine kinase FLT3 is overexpressed in blasts of ~90% of acute myelogenous leukemia (AML) and the majority of B-lymphoid leukemia patients. Internal tandem duplications (ITDs) in the juxtamembrane region and point mutations in the kinase domain of FLT3 are found in ~37% of AML patients and are associated with a poor prognosis. We have recently developed a fully human monoclonal antibody (IMC-EB10) which binds with high affinity to FLT3 receptor on human leukemia cells. In the present study, a novel auristatin conjugate of the anti-FLT3 antibody (EB10-MMAF) was prepared using a dipeptide linker that allows for drug release inside the lysosomes of antigen-positive cells. The MMAF conjugates were stable in buffers and plasma. EB10-MMAF (drug/antibody raito = 8) was highly potent, and selectively inhibited the growth of FLT3-expressing leukemia cells with an IC50 of 0.19 nM and 0.08 nM for MV4;11 and BaF3-ITD cells (both positive for FLT3-ITD), 1.11 nM, 6.18 nM and 1.82 nM for REH , EOL-1, EM3 cells (all three positive for wild-type FLT3), and 135 nM for JM1 (negative for FLT3). An MMAF conjugate with a control antibody was not active in these cell lines (IC50s > 5.9 uM). Flow cytometric analysis with annexin V indicated that EB10-MMAF treatment induced apoptosis of leukemia cells in vitro. In vivo treatment with EB10-MMAF strongly inhibited leukemia growth and prolonged survival of mice in both EOL-1 and BaF3-ITD leukemia models. In summary, immunoconjugates composed of a fully human anti-FLT3 antibody and a potent auristatin drug may provide a valuable therapeutic approach for AML and other FLT3-positive leukemias.


2009 ◽  
Vol 77 (3) ◽  
pp. 959-969 ◽  
Author(s):  
Mitchell A. Psotka ◽  
Fumiko Obata ◽  
Glynis L. Kolling ◽  
Lisa K. Gross ◽  
Moin A. Saleem ◽  
...  

ABSTRACT Hemolytic-uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli infection is a leading cause of pediatric acute renal failure. Bacterial toxins produced in the gut enter the circulation and cause a systemic toxemia and targeted cell damage. It had been previously shown that injection of Shiga toxin 2 (Stx2) and lipopolysaccharide (LPS) caused signs and symptoms of HUS in mice, but the mechanism leading to renal failure remained uncharacterized. The current study elucidated that murine cells of the glomerular filtration barrier were unresponsive to Stx2 because they lacked the receptor glycosphingolipid globotriaosylceramide (Gb3) in vitro and in vivo. In contrast to the analogous human cells, Stx2 did not alter inflammatory kinase activity, cytokine release, or cell viability of the murine glomerular cells. However, murine renal cortical and medullary tubular cells expressed Gb3 and responded to Stx2 by undergoing apoptosis. Stx2-induced loss of functioning collecting ducts in vivo caused production of increased dilute urine, resulted in dehydration, and contributed to renal failure. Stx2-mediated renal dysfunction was ameliorated by administration of the nonselective caspase inhibitor Q-VD-OPH in vivo. Stx2 therefore targets the murine collecting duct, and this Stx2-induced injury can be blocked by inhibitors of apoptosis in vivo.


2010 ◽  
Vol 201 (6) ◽  
pp. 946-955 ◽  
Author(s):  
Barry Rockx ◽  
Eric Donaldson ◽  
Matthew Frieman ◽  
Timothy Sheahan ◽  
Davide Corti ◽  
...  

1977 ◽  
Vol 73 (3) ◽  
pp. 601-615 ◽  
Author(s):  
RR Gould ◽  
GG Borisy

The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.


Hepatology ◽  
2011 ◽  
Vol 55 (2) ◽  
pp. 364-372 ◽  
Author(s):  
Philip Meuleman ◽  
Maria Teresa Catanese ◽  
Lieven Verhoye ◽  
Isabelle Desombere ◽  
Ali Farhoudi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document