In vivo and in vitro studies with a novel human monoclonal antibody against tetanus neurotoxin

Toxicon ◽  
2013 ◽  
Vol 75 ◽  
pp. 216
Author(s):  
E. Girard ◽  
P. Villeneuve ◽  
V. Devos ◽  
A.S. Dezetter ◽  
A. Fontayne ◽  
...  
2010 ◽  
Vol 78 (3) ◽  
pp. 1376-1382 ◽  
Author(s):  
Donna E. Akiyoshi ◽  
Abhineet S. Sheoran ◽  
Curtis M. Rich ◽  
L. Richard ◽  
Susan Chapman-Bonofiglio ◽  
...  

ABSTRACT 5C12 HuMAb is a human monoclonal antibody against the A subunit of Shiga toxin 2 (Stx2). We have previously shown that 5C12 HuMAb effectively neutralizes the cytotoxic effects of this toxin by redirecting its transport within the cell and also by neutralizing the toxin's ability to inhibit protein synthesis. The 5C12 HuMAb and its recombinant IgG1 version protect mice at a dose of 0.6 μg against a lethal challenge of Stx2. The contribution of the Fc region to this observed neutralization activity of the 5C12 antibody against Stx2 was investigated in this study. Using recombinant DNA technology, 5C12 isotype variants (IgG1, IgG2, IgG3, and IgG4) and antibody fragments [Fab, F(ab′)2] were expressed in Chinese hamster ovary cells and evaluated in vitro and in vivo. All four 5C12 isotype variants showed protection in vitro, with the IgG3 and IgG4 variants showing the highest protection in vivo. The Fab and F(ab′)2 fragments also showed protection in vitro but no protection in the mouse toxicity model. Similar results were obtained for a second HuMAb (5H8) against the B subunit of Stx2. The data suggest the importance of the Fc region for neutralization activity, but it is not clear if this is related to the stability of the full-length antibody or if the Fc region is required for effective elimination of the toxin from the body.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2513-2517 ◽  
Author(s):  
K Hamamura ◽  
H Matsuda ◽  
Y Takeuchi ◽  
S Habu ◽  
H Yagita ◽  
...  

Hematopoiesis requires specific interactions with the microenvironments, and VLA-4 has been implicated in these interactions based on in vitro studies. To study the role of VLA-4 in hematopoiesis in vivo, we performed in utero treatment of mice with an anti-VLA-4 monoclonal antibody. Although all hematopoietic cells in fetal liver expressed VLA-4, the treatment specifically induced anemia. It had no effect on the development of nonerythroid lineage cells, including lymphoids and myeloids. In the treated liver almost no erythroblast was detected, whereas the erythroid progenitors, which give rise to erythroid colonies in vitro, were present. These results indicate that VLA-4 plays a critical role in erythropoiesis, while it is not critical in lymphopoiesis in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1788-1788
Author(s):  
Yiwen Li ◽  
Hongli Li ◽  
Mei-Nai Wang ◽  
Rajiv Bassi ◽  
Dale Ludwig ◽  
...  

Abstract The receptor tyrosine kinase FLT3 is overexpressed in blasts of ~90% of acute myelogenous leukemia (AML) and the majority of B-lymphoid leukemia patients. Internal tandem duplications (ITDs) in the juxtamembrane region and point mutations in the kinase domain of FLT3 are found in ~37% of AML patients and are associated with a poor prognosis. We have recently developed a fully human monoclonal antibody (IMC-EB10) which binds with high affinity to FLT3 receptor on human leukemia cells. In the present study, a novel auristatin conjugate of the anti-FLT3 antibody (EB10-MMAF) was prepared using a dipeptide linker that allows for drug release inside the lysosomes of antigen-positive cells. The MMAF conjugates were stable in buffers and plasma. EB10-MMAF (drug/antibody raito = 8) was highly potent, and selectively inhibited the growth of FLT3-expressing leukemia cells with an IC50 of 0.19 nM and 0.08 nM for MV4;11 and BaF3-ITD cells (both positive for FLT3-ITD), 1.11 nM, 6.18 nM and 1.82 nM for REH , EOL-1, EM3 cells (all three positive for wild-type FLT3), and 135 nM for JM1 (negative for FLT3). An MMAF conjugate with a control antibody was not active in these cell lines (IC50s > 5.9 uM). Flow cytometric analysis with annexin V indicated that EB10-MMAF treatment induced apoptosis of leukemia cells in vitro. In vivo treatment with EB10-MMAF strongly inhibited leukemia growth and prolonged survival of mice in both EOL-1 and BaF3-ITD leukemia models. In summary, immunoconjugates composed of a fully human anti-FLT3 antibody and a potent auristatin drug may provide a valuable therapeutic approach for AML and other FLT3-positive leukemias.


2010 ◽  
Vol 201 (6) ◽  
pp. 946-955 ◽  
Author(s):  
Barry Rockx ◽  
Eric Donaldson ◽  
Matthew Frieman ◽  
Timothy Sheahan ◽  
Davide Corti ◽  
...  

Hepatology ◽  
2011 ◽  
Vol 55 (2) ◽  
pp. 364-372 ◽  
Author(s):  
Philip Meuleman ◽  
Maria Teresa Catanese ◽  
Lieven Verhoye ◽  
Isabelle Desombere ◽  
Ali Farhoudi ◽  
...  

2015 ◽  
Vol 59 (5) ◽  
pp. 2647-2653 ◽  
Author(s):  
Miguel Retamal ◽  
Yacine Abed ◽  
Chantal Rhéaume ◽  
Francesca Cappelletti ◽  
Nicola Clementi ◽  
...  

ABSTRACTPN-SIA28 is a human monoclonal antibody (Hu-MAb) targeting highly conserved epitopes within the stem portion of the influenza virus hemagglutinin (HA) (N. Clementi, et al, PLoS One 6:e28001, 2011,http://dx.doi.org/10.1371/journal.pone.0028001). Previousin vitrostudies demonstrated PN-SIA28 neutralizing activities against phylogenetically divergent influenza A subtypes. In this study, the protective activity of PN-SIA28 was evaluated in mice inoculated with lethal influenza A/WSN/33 (H1N1), A/Quebec/144147/09 (H1N1)pdm09, and A/Victoria/3/75 (H3N2) viruses. At 24 h postinoculation (p.i.), animals received PN-SIA28 intraperitoneally (1 or 10 mg/kg of body weight) or 10 mg/kg of unrelated Hu-MAb (mock). Body weight loss and mortality rate (MR) were recorded for 14 days postinfection (p.i.). Lung viral titers (LVT) were determined at day 5 p.i. In A/WSN/33 (H1N1)-infected groups, all untreated and mock-receiving mice died, whereas MRs of 87.5% and 25% were observed in mice that received PN-SIA28 1 and 10 mg/kg, respectively. In influenza A(H1N1) pdm09-infected groups, an MR of 75% was recorded for untreated and mock-treated groups, whereas the PN-SIA28 1-mg/kg and 10-mg/kg groups had rates of 62.5% and 0%, respectively. In A/Victoria/3/75 (H3N2)-infected animals, untreated and mock-treated animals had MRs of 37.5% and 25%, respectively, and no mortalities were recorded after PN-SIA28 treatments. Accordingly, PN-SIA28 treatments significantly reduced weight losses and resulted in a ≥1-log reduction in LVT compared to the control in all infection groups. This study confirms that antibodies targeting highly conserved epitopes in the influenza HA stem region, like PN-SIA28, not only neutralize influenza A viruses of clinically relevant subtypesin vitrobut also, more importantly, protect from a lethal influenza virus challengein vivo.


2015 ◽  
Vol 112 (30) ◽  
pp. 9430-9435 ◽  
Author(s):  
Xiaoli Xiong ◽  
Davide Corti ◽  
Junfeng Liu ◽  
Debora Pinna ◽  
Mathilde Foglierini ◽  
...  

H5N1 avian influenza viruses remain a threat to public health mainly because they can cause severe infections in humans. These viruses are widespread in birds, and they vary in antigenicity forming three major clades and numerous antigenic variants. The most important features of the human monoclonal antibody FLD194 studied here are its broad specificity for all major clades of H5 influenza HAs, its high affinity, and its ability to block virus infection, in vitro and in vivo. As a consequence, this antibody may be suitable for anti-H5 therapy and as a component of stockpiles, together with other antiviral agents, for health authorities to use if an appropriate vaccine was not available. Our mutation and structural analyses indicate that the antibody recognizes a relatively conserved site near the membrane distal tip of HA, near to, but distinct from, the receptor-binding site. Our analyses also suggest that the mechanism of infectivity neutralization involves prevention of receptor recognition as a result of steric hindrance by the Fc part of the antibody. Structural analyses by EM indicate that three Fab fragments are bound to each HA trimer. The structure revealed by X-ray crystallography is of an HA monomer bound by one Fab. The monomer has some similarities to HA in the fusion pH conformation, and the monomer’s formation, which results from the presence of isopropanol in the crystallization solvent, contributes to considerations of the process of change in conformation required for membrane fusion.


2005 ◽  
Vol 79 (10) ◽  
pp. 5900-5906 ◽  
Author(s):  
Jianhua Sui ◽  
Wenhui Li ◽  
Anjeanette Roberts ◽  
Leslie J. Matthews ◽  
Akikazu Murakami ◽  
...  

ABSTRACT In this report, the antiviral activity of 80R immunoglobulin G1 (IgG1), a human monoclonal antibody against severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) protein that acts as a viral entry inhibitor in vitro, was investigated in vivo in a mouse model. When 80R IgG1 was given prophylactically to mice at doses therapeutically achievable in humans, viral replication was reduced by more than 4 orders of magnitude to below assay limits. The essential core region of S protein required for 80R binding was identified as a conformationally sensitive fragment (residues 324 to 503) that overlaps the receptor ACE2-binding domain. Amino acids critical for 80R binding were identified. In addition, the effects of various 80R-binding domain amino acid substitutions which occur in SARS-like-CoV from civet cats, and which evolved during the 2002/2003 outbreak and in a 2003/2004 Guangdong index patient, were analyzed. The results demonstrated that the vast majority of SARS-CoVs are sensitive to 80R. We propose that by establishing the susceptibility and resistance profiles of newly emerging SARS-CoVs through early S1 genotyping of the core 180-amino-acid neutralizing epitope of 80R, an effective immunoprophylaxis strategy with 80R should be possible in an outbreak setting. Our study also cautions that for any prophylaxis strategy based on neutralizing antibody responses, whether by passive or active immunization, a genotyping monitor will be necessary for effective use.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Yan Q. Xiong ◽  
Angeles Estellés ◽  
L. Li ◽  
W. Abdelhady ◽  
R. Gonzales ◽  
...  

ABSTRACT Many serious bacterial infections are antibiotic refractory due to biofilm formation. A key structural component of biofilm is extracellular DNA, which is stabilized by bacterial proteins, including those from the DNABII family. TRL1068 is a high-affinity human monoclonal antibody against a DNABII epitope conserved across both Gram-positive and Gram-negative bacterial species. In the present study, the efficacy of TRL1068 for the disruption of biofilm was demonstrated in vitro in the absence of antibiotics by scanning electron microscopy. The in vivo efficacy of this antibody was investigated in a well-characterized catheter-induced aortic valve infective endocarditis model in rats infected with a methicillin-resistant Staphylococcus aureus (MRSA) strain with the ability to form thick biofilms, obtained from the blood of a patient with persistent clinical infection. Animals were treated with vancomycin alone or in combination with TRL1068. MRSA burdens in cardiac vegetations and within intracardiac catheters, kidneys, spleen, and liver showed significant reductions in the combination arm versus vancomycin alone (P < 0.001). A trend toward mortality reduction was also observed (P = 0.09). In parallel, the in vivo efficacy of TRL1068 against a multidrug-resistant clinical Acinetobacter baumannii isolate was explored by using an established mouse model of skin and soft tissue catheter-related biofilm infection. Catheter segments infected with A. baumannii were implanted subcutaneously into mice; animals were treated with imipenem alone or in combination with TRL1068. The combination showed a significant reduction of catheter-adherent bacteria versus the antibiotic alone (P < 0.001). TRL1068 shows excellent promise as an adjunct to standard-of-care antibiotics for a broad range of difficult-to-treat bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document