scholarly journals Mannose-Capped Lipoarabinomannan from Mycobacterium tuberculosis Induces Soluble Tumor Necrosis Factor Receptor Production through Tumor Necrosis Factor Alpha-Converting Enzyme Activation

2013 ◽  
Vol 81 (2) ◽  
pp. 618-618
Author(s):  
Jillian M. Richmond ◽  
Elizabeth R. Duffy ◽  
Jinhee Lee ◽  
Kavon Kaboli ◽  
Yun Seong Kim ◽  
...  
2012 ◽  
Vol 80 (11) ◽  
pp. 3858-3868 ◽  
Author(s):  
Jillian M. Richmond ◽  
Elizabeth R. Duffy ◽  
Jinhee Lee ◽  
Kavon Kaboli ◽  
Daniel G. Remick ◽  
...  

ABSTRACTPrimaryMycobacterium tuberculosisinfection results in granuloma formation in lung tissue. A granuloma encapsulates mycobacterium-containing cells, thereby preventing dissemination and further infection. Tumor necrosis factor alpha (TNF-α) is a host-protective cytokine duringM. tuberculosisinfection due to its role in promoting and sustaining granuloma formation. TNF activity is regulated through the production of soluble TNF receptors (sTNFRI and sTNFRII). Therefore, we examined the potential production of endogenous sTNFRs duringM. tuberculosisinfection. Using the murine model of aerosolM. tuberculosisinfection, we determined that levels of sTNFR production were elevated in bronchoalveolar lavage fluid 1 month following infection. An investigation ofM. tuberculosiscell wall components identified that the known virulence factor mannose-capped lipoarabinomannan (ManLAM) was sufficient to induce sTNFR production, with sTNFRII being produced preferentially compared with sTNFRI. ManLAM stimulated the release of sTNFRs without TNF production, which corresponded to an increase in TNF-α-converting enzyme (TACE) activity. To determine the relevance of these findings, serum samples fromM. tuberculosis-infected patients were tested and found to have an increase in the sTNFRII/sTNFRI ratio. These data identify a mechanism by whichM. tuberculosisinfection can promote the neutralization of TNF and furthermore suggest the potential use of the sTNFRII/sTNFRI ratio as an indicator of tuberculosis disease.


2020 ◽  
Author(s):  
Joao Batista Junior

<div>This study reveals, for the first time, that rosiglitazone and pioglitazone, two thiazolidinedione drugs already approved as therapeutic agents to treat type II diabetes, were found to bind favorably to tumor necrosis factor alpha converting enzyme catalytic site with highlighted binding features.</div><div><br></div>This study suggests that rosiglitazone and pioglitazone, acting as TACE inhibitors agents might avoid or attenuate the hyperexcitability proteolytic activity state of TACE, represent a new potential therapeutic approach to treat SARS-CoV-2 infection-associated severe systemic inflammatory responses observed among severely or critically ill SARS-CoV-2 patients and, consequently, to diminish severe inflammatory‐induced lung injury, ARDS development and death rates.<br><br>


2003 ◽  
Vol 50 (3) ◽  
pp. 625-645 ◽  
Author(s):  
Renata Mezyk ◽  
Monika Bzowska ◽  
Joanna Bereta

Tumor necrosis factor-alpha converting enzyme (TACE) is the first described and best characterized secretase. In this review the structure and the possible roles for TACE are summarized. The substrate specificity and the regulation of TACE activity as well as redundancy and possible cooperations of distinct secretases are also discussed.


2003 ◽  
Vol 285 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Franck Peiretti ◽  
Matthias Canault ◽  
Paule Deprez-Beauclair ◽  
Virginie Berthet ◽  
Bernadette Bonardo ◽  
...  

2000 ◽  
Vol 36 (4) ◽  
pp. 1288-1294 ◽  
Author(s):  
Mamoru Satoh ◽  
Motoyuki Nakamura ◽  
Hidetoshi Satoh ◽  
Hidenori Saitoh ◽  
Ikuo Segawa ◽  
...  

2006 ◽  
Vol 26 (14) ◽  
pp. 5421-5435 ◽  
Author(s):  
Yuhui Wang ◽  
Hei Sook Sul

ABSTRACT Preadipocyte factor 1 (Pref-1), an epidermal growth factor repeat containing transmembrane protein found in the preadipocytes, inhibits adipocyte differentiation in vitro and in vivo. Here, we examined the processing of membrane form of Pref-1A to release the 50-kDa soluble form that inhibits adipocyte differentiation. The ectodomain cleavage of Pref-1 is markedly enhanced by phorbol 12-myristate 13-acetate in a dose- and time-dependent manner. The basal and stimulated cleavage is inhibited by the broad metalloproteinase inhibitor GM6001, a fact that suggests that cleavage of membrane Pref-1A is dependent on a metalloproteinase. Next, we showed that release of soluble Pref-1A is inhibited by TAPI-0 and by a tissue inhibitor of metalloproteinase-3, TIMP-3, that can inhibit tumor necrosis factor alpha converting enzyme (TACE), but not by TIMP-1 or TIMP-2. On the other hand, overexpression of TACE increases Pref-1 cleavage to produce the 50-kDa soluble form. Furthermore, this cleavage was not detected in cells with TACE mutation or with TACE small interfering RNA. TACE-mediated shedding of Pref-1 ectodomain inhibits adipocyte differentiation of 3T3-L1 cells and in Pref-1-null mouse embryo fibroblasts transduced with Pref-1A. Identification of TACE as the major protease responsible for conversion of membrane-bound Pref-1 to the biologically active diffusible form provides a new insight into Pref-1 function in adipocyte differentiation.


Sign in / Sign up

Export Citation Format

Share Document