scholarly journals Effect of oxygen radical scavengers on K-cell cytolysis.

1984 ◽  
Vol 43 (3) ◽  
pp. 942-946 ◽  
Author(s):  
B U Bowman ◽  
H A Shoeb
1992 ◽  
Vol 73 (2) ◽  
pp. 687-694 ◽  
Author(s):  
K. Fujimoto ◽  
S. Yoshikawa ◽  
S. Martin ◽  
S. G. Kayes ◽  
J. C. Parker

The protective effect of oxygen radical scavengers on lung injury induced by activated eosinophils was examined in isolated perfused rat lungs. Eosinophils were obtained by bronchoalveolar lavage from rats infected with Toxocara canis and activated with phorbol myristate acetate (PMA). There were no changes in pulmonary vascular (RT) and airway (Raw) resistances and only minimal changes in vascular permeability assessed using the capillary filtration coefficient (Kf,c) in PMA control lungs and nonactivated eosinophil-treated lungs. In lungs receiving 3 x 10(6) PMA-activated eosinophils, there were significant increases from baseline of 7.3-fold in RT at 30 min, primarily due to the constriction of small arteries and veins; 3.6-fold in Kf,c at 90 and 130 min; and 2.5-fold in Raw. The lungs also became markedly edematous. Both superoxide dismutase and catalase pretreatment prevented the significant increase in Kf,c and lung wet-to-dry weight ratios and partially attenuated the increase in Raw, but did not significantly inhibit the increase in RT induced by activated eosinophils. Heat-inactivated catalase did not attenuate the eosinophil-induced increases in Kf,c, Raw, or RT. Thus, activated eosinophils acutely increased microvascular permeability primarily through production of oxygen free radicals. The free radical scavengers superoxide dismutase and catalase partially attenuated the bronchoconstriction but had no significant effect on the vasoconstriction induced by activated eosinophils.


1991 ◽  
Vol 71 (4) ◽  
pp. 1185-1195 ◽  
Author(s):  
R. J. Traystman ◽  
J. R. Kirsch ◽  
R. C. Koehler

This review addresses current understanding of oxygen radical mechanisms as they relate to the brain during ischemia and reperfusion. The mechanism for radical production remains speculative in large part because of the difficulty of measuring radical species in vivo. Breakdown of lipid membranes during ischemia leads to accumulation of free fatty acids. Decreased energy stores during ischemia result in the accumulation of adenine nucleotides. During reperfusion, metabolism of free fatty acids via the cyclooxygenase pathway and metabolism of adenine nucleotides via the xanthine oxidase pathway are the most likely sources of oxygen radicals. Although leukocytes have been found to accumulate in some models of ischemia and reperfusion, their mechanistic role remains in question. Therapeutic strategies aimed at decreasing brain injury have included administration of radical scavengers at the time of reperfusion. Efficacy of traditional oxygen radical scavengers such as superoxide dismutase and catalase may be limited by their inability to cross the blood-brain barrier. Lipid-soluble antioxidants appear more efficacious because of their ability to cross the blood-brain barrier and because of their presence in membrane structures where peroxidative reactions can be halted.


Author(s):  
J. Hill ◽  
T. Lindsay ◽  
C. R. Valeri ◽  
D. Shepro ◽  
H. B. Hechtman

Sign in / Sign up

Export Citation Format

Share Document