oxygen free radical
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 20)

H-INDEX

50
(FIVE YEARS 2)

Oxygen ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 96-120
Author(s):  
Anna Atlante ◽  
Daniela Valenti ◽  
Valentina Latina ◽  
Giuseppina Amadoro

Oxygen free radical burst is a prominent early event in the pathogenesis of Alzheimer’s disease (AD). Posttranslational modifications of Tau protein, primarily hyper-phosphorylation and truncation, are indicated as critical mediators of AD pathology. This finding is confirmed by the high levels of oxidative stress markers and by the increased susceptibility to oxygen radicals found in cultured neurons and in brains from transgenic animal models expressing toxic Tau forms, in concomitance with a dramatic reduction in their viability/survival. Here, we collect the latest progress in research focused on the reciprocal and dynamic interplay between oxygen radicals and pathological Tau, discussing how these harmful species cooperate and/or synergize in the progression of AD. In this context, a better understanding of the role of oxidative stress in determining Tau pathology, and vice versa, primarily could be able to define novel biomarkers of early stages of human tauopathies, including AD, and then to develop therapeutic strategies aimed at attenuating, halting, or reversing disease progression.


2021 ◽  
Vol 22 (20) ◽  
pp. 10948
Author(s):  
Ching-Tien Lee ◽  
Cheng-Fang Hsieh ◽  
Jiz-Yuh Wang

Bisphenol A (BPA) is an environmental contaminant widely suspected to be a neurological toxicant. Epidemiological studies have demonstrated close links between BPA exposure, pathogenetic brain degeneration, and altered neurobehaviors, considering BPA a risk factor for cognitive dysfunction. However, the mechanisms of BPA resulting in neurodegeneration remain unclear. Herein, cultured N2a neurons were subjected to BPA treatment, and neurotoxicity was assessed using neuronal viability and differentiation assays. Signaling cascades related to cellular self-degradation were also evaluated. BPA decreased cell viability and axon outgrowth (e.g., by down-regulating MAP2 and GAP43), thus confirming its role as a neurotoxicant. BPA induced neurotoxicity by down-regulating Bcl-2 and initiating apoptosis and autophagy flux inhibition (featured by nuclear translocation of apoptosis-inducing factor (AIF), light chain 3B (LC3B) aggregation, and p62 accumulation). Both heme oxygenase (HO)-1 and AMP-activated protein kinase (AMPK) up-regulated/activated by BPA mediated the molecular signalings involved in apoptosis and autophagy. HO-1 inhibition or AIF silencing effectively reduced BPA-induced neuronal death. Although BPA elicited intracellular oxygen free radical production, ROS scavenger NAC exerted no effect against BPA insults. These results suggest that BPA induces N2a neurotoxicity characterized by AIF-dependent apoptosis and p62-related autophagy defects via HO-1 up-regulation and AMPK activation, thereby resulting in neuronal degeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jesse S. Ko ◽  
Nam Q. Le ◽  
Danielle R. Schlesinger ◽  
Dajie Zhang ◽  
James K. Johnson ◽  
...  

AbstractElectrochemical advanced oxidative processes (EAOP) are a promising route to destroy recalcitrant organic contaminants such as per- and polyfluoroalkyl substances (PFAS) in drinking water. Central to EAOP are catalysis-induced reactive free radicals for breaking the carbon fluorine bonds in PFAS. Generating these reactive species electrochemically at electrodes provides an advantage over other oxidation processes that rely on chemicals or other harsh conditions. Herein, we report on the performance of niobium (Nb) doped rutile titanium oxide (TiO2) as a novel EAOP catalytic material, combining theoretical modeling with experimental synthesis and characterization. Calculations based on density functional theory are used to predict the overpotential for oxygen evolution at these candidate electrodes, which must be high in order to oxidize PFAS. The results indicate a non-monotonic trend in which Nb doping below 6.25 at.% is expected to reduce performance relative to TiO2, while higher concentrations up to 12.5 at.% lead to increased performance, approaching that of state-of-the-art Magnéli Ti4O7. TiO2 samples were synthesized with Nb doping concentration at 10 at.%, heat treated at temperatures from 800 to 1100 °C, and found to exhibit high oxidative stability and high generation of reactive oxygen free radical species. The capability of Nb-doped TiO2 to destroy two common species of PFAS in challenge water was tested, and moderate reduction by ~ 30% was observed, comparable to that of Ti4O7 using a simple three-electrode configuration. We conclude that Nb-doped TiO2 is a promising alternative EAOP catalytic material with increased activity towards generating reactive oxygen species and warrants further development for electrochemically destroying PFAS contaminants.


2021 ◽  
Vol 11 (8) ◽  
pp. 1420-1427
Author(s):  
Qing Liu ◽  
Liping Yang ◽  
Qingrong Peng

Bacterial infection and oxidative stress are serious complications in emergency burn patients, as the increase of oxygen free radicals in burn wounds can aggravate vascular endothelial cell injury, make the wounds ischemic and hypoxic, and delay wound healing. Traditional dressings cannot meet the first-aid needs of burn patients. In this study, polycaprolactone/chitosan (PCL/CS) was used as an electrospun nanofiber matrix, and curcumin (CUR), a molecule with excellent anti-inflammatory and antioxidant properties, was introduced to construct polycaprolactone/ chitosan graft copolymer-zein-curcumin electrospun nanofibers (PCL/CS-ZE-CUR). The results of clinical experiments suggest that compared with traditional dressings, based on the excellent mechanical properties and antibacterial activity of PCL/CS, the new dressing can exhibit oxygen free radical-scavenging abilities of CUR to accelerate wound healing and is expected to provide a beneficial upgrade for wound emergency care.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11756
Author(s):  
Bingshuai Du ◽  
Qing Zhang ◽  
Qingqin Cao ◽  
Yu Xing ◽  
Ling Qin ◽  
...  

Chinese chestnuts (Castanea mollissima Blume.) contain 12–18 ovules in one ovary, but only one ovule develops into a seed, indicating a high ovule abortion rate. In this study, the Chinese chestnut ‘Huaihuang’ was used to explore the possible mechanisms of ovule abortion with respect to morphology and proteomics. The morphology and microstructure of abortive ovules were found to be considerably different from those of fertile ovules at 20 days after anthesis (20 DAA). The fertile ovules had completely formed tissues, such as the embryo sac, embryo and endosperm. By contrast, in the abortive ovules, there were no embryo sacs, and wide spaces between the integuments were observed, with few nucelli. Fluorescence labelling of the nuclei and transmission electron microscopy (TEM) observations showed that cells of abortive ovules were abnormally shaped and had thickened cell walls, folded cell membranes, condensed cytoplasm, ruptured nuclear membranes, degraded nucleoli and reduced mitochondria. The iTRAQ (isobaric tag for relative and absolute quantitation) results showed that in the abortive ovules, low levels of soluble protein with small molecular weights were found, and most of differently expressed proteins (DEPs) were related to protein synthesis, accumulation of active oxygen free radical, energy synthesis and so on. These DEPs might be associated with abnormal ovules formation.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4351
Author(s):  
Marta Donini ◽  
Salvatore Calogero Gaglio ◽  
Carlo Laudanna ◽  
Massimiliano Perduca ◽  
Stefano Dusi

Oxyresveratrol, a polyphenol extracted from the plant Artocarpus lakoocha Roxb, has been reported to be an antioxidant and an oxygen-free radical scavenger. We investigated whether oxyresveratrol affects the generation of superoxide anion (O2−) by human monocytes, which are powerful reactive oxygen species (ROS) producers. We found that oxyresveratrol inhibited the O2− production induced upon stimulation of monocytes with β-glucan, a well known fungal immune cell activator. We then investigated whether the inclusion of oxyresveratrol into nanoparticles could modulate its effects on O2− release. We synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on monocytes. We found that empty PLGA nanoparticles induced O2− production by resting monocytes and enhanced the formation of this radical in β-glucan-stimulated monocytes. Interestingly, the insertion of oxyresveratrol into PLGA nanoparticles significantly inhibited the O2− production elicited by unloaded nanoparticles in resting monocytes as well as the synergistic effect of nanoparticles and β-glucan. Our results indicate that oxyresveratrol is able to inhibit ROS production by activated monocytes, and its inclusion into PLGA nanoparticles mitigates the oxidative effects due to the interaction between these nanoparticles and resting monocytes. Moreover, oxyresveratrol can contrast the synergistic effects of nanoparticles with fungal agents that could be present in the patient tissues. Therefore, oxyresveratrol is a natural compound able to make PLGA nanoparticles more biocompatible.


2021 ◽  
Author(s):  
Jesse S. Ko ◽  
Nam Q. Le ◽  
Danielle R. Schlesinger ◽  
James K. Johnson ◽  
Zhiyong Xia

Abstract Electrochemical advanced oxidative processes (EAOP) are a promising route to destroy recalcitrant organic contaminants such as per- and poly- fluoroalkyl substances (PFAS) in drinking water. Central to EAOP are catalysis-induced reactive free radicals for breaking the carbon fluorine bonds in PFAS. Generating these reactive species electrochemically at electrodes provides an advantage over other oxidation processes that rely on chemicals or other harsh conditions. Herein, we report on the performance of niobium (Nb) doped rutile titanium oxide (TiO2) as a novel EAOP catalytic material, combining theoretical modeling with experimental synthesis and characterization. Calculations based on density functional theory reveal that Nb doping below 6.25 at.% is expected to reduce radical generation, and higher concentrations up to 12.5 at.% lead to increased performance, competitive with state-of-the-art Magnéli Ti4O7. Nb-doped TiO2 samples were synthesized and found to generate reactive oxygen free radical species with high oxidative stability. We conclude that Nb-doped TiO2 is a promising alternative EAOP catalytic material with increased activity towards generating reactive oxygen species, and is a viable solution for electrochemically destructing PFAS contaminants.


Author(s):  
REKHA S ◽  
KALPANA DIVEKAR ◽  
CHANDRASHEKHARA S

Objective: Diabetes mellitus is a persistent disorder caused by deficiency in insulin production. Oxidative stress plays an important role in physiopathology of diabetes. The present research determined the antidiabetic and antioxidant effects of 5-naphthalidin thiazolidinediones derivatives. Methods: Both in vitro and in vivo experiments were carried out on diabetes induced male Swiss albino rats by single intramuscular injection of alloxan (0.15 mg/kg i.m) and IDDM-rats received 4b, 4c, or 4d (36 mg/kg, p.o). The derivatives were further subjected to insulin secretion by RIN-5F cells confirmed insulinotropic effect. In vitro antioxidant activity was evaluated using enzymatic activities on cell lines In addition, all the synthesized derivatives showed non-toxic effects against a diseased human lung fibroblast (COPD), HCC7231 (TACC CCL-96). Results: The results revealed that 4b, 4c, and 4d showed promising results by substantially lowering the blood glucose levels on 21st day of post-administration. Serum insulin levels substantially rose, suggesting that derivatives exert insulinotropic effects through different pathways. 4c showed oxygen free-radical scavenging activity. Conclusion: Our study proves that oral administration of 5-naphthalidin-TZD twice a day is a valuable treatment for type II diabetes. It seems to be a good drug moiety endowed significant oxygen free-radical scavenging activity.


2021 ◽  
Vol 27 (spe2) ◽  
pp. 95-98
Author(s):  
Shuisheng Li ◽  
Baoxin Zhang ◽  
Pingjun Ma

ABSTRACT Fatigue is a comprehensive process that involves many physiological and biochemical factors. It is a normal physiological reaction when human physical or mental activities reach a certain level. In recent years, it has been verified that free radicals are closely related to exercise-induced fatigue. Cardamine bursa purified selenoprotein has good oxygen-free radical scavenging ability and anti-lipid peroxide. It could protect mitochondria, liver, and red blood cells from peroxide injury. Therefore, it was speculated that the purification of selenoprotein Cardamine may play an active role in attenuating exercise-induced fatigue by scavenging free radicals. This study cleared the selenite protein Capsella bursa (SPC) as a research object, and evaluated its structural characteristics in relieving exercise-induced fatigue. The selenoprotein index system for exercise-induced fatigue was constructed by combining two AHP methods, principal component analysis and factor analysis. Purity, subunit composition, amino acid composition and RCM content were evaluated. The corresponding RCM protein was preliminarily predicted. The results showed that SPCH could significantly prolong the swimming time (P <0.01), improve the lactate clearance capacity (P <0.01), increase the glycogen content of the liver (P <0.01), and reduce the level of the BUN (P <0.05). SPCH has a good effect in relieving exercise-induced fatigue in mice, so it can be considered for development as a nutritional supplement to alleviate exercise-induced fatigue.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1950
Author(s):  
Mingyan Zhang ◽  
Wuchao Ma ◽  
Chao Wang ◽  
Ximing Yang ◽  
Yuhang Lou ◽  
...  

Pinus koraiensis nut-coated film is a kind of by-product of nut processing, which has been shown to contain flavonoids, polyphenols, and other substances that can be used to produce natural antioxidant extracts. In this study, response surface methodology (RSM) was used to optimize the extraction process of flavonoids of P. koraiensis nut-coated film (PNF), and macroporous resin HPD600 was used to purify PNF (P-PNF). Its antioxidant activity was examined by DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging capacity, oxygen free radical absorption capacity (ORAC), total oxygen radical capture (TRAP), and iron ion reduction capacity. Under the ideal extraction conditions comprising a cellulase dosage of 90 U/g, a material/liquid ratio of 1:20 (g/mL), and an extraction time of 2 h, the PNF yield was 3.37%. Purification conditions were sample concentration of 2.0 mg/mL, pH of 5, water washing volume of 3 bed volume (BV), eluent ethanol concentration of 50%, and volume of 2 BV. The P-PNF recovery was 84.32%, and purity increased from 33.80% to 61.70%. Additionally, P-PNF showed increased antioxidant activity compared to PNF. Cumulatively, this study obtained the optimal values for the process parameters in order to achieve the maximum rates of extraction of PNF for economically optimal production at an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document