scholarly journals Recombinant interleukin-1 alpha and recombinant tumor necrosis factor alpha synergize in vivo to induce early endotoxin tolerance and associated hematopoietic changes.

1988 ◽  
Vol 56 (10) ◽  
pp. 2650-2657 ◽  
Author(s):  
S N Vogel ◽  
E N Kaufman ◽  
M D Tate ◽  
R Neta
1989 ◽  
Vol 86 (17) ◽  
pp. 6788-6792 ◽  
Author(s):  
D F Andrews ◽  
J J Nemunaitis ◽  
J W Singer

Analysis of protooncogene RNA expression in marrow stromal cells from long-term marrow culture demonstrated high levels of c-abl 5-, 6-, and 7-kilobase (kb) RNA transcripts. In experiments on three independently derived simian virus 40-transformed marrow stromal cell lines, the expression of these c-abl transcripts was further increased in response to recombinant tumor necrosis factor alpha (1000 units/ml) and interleukin 1 alpha (10 units/ml). Although lymphocyte-conditioned medium predominantly up-regulated the 5-kb transcript, interleukin 1 alpha primarily affected the 6-kb transcript. The up-regulation of the 5-kb c-abl message correlated with up-regulation of the granulocyte/macrophage colony-stimulating factor transcript and down-regulation of procollagen I transcripts in transformed cells. These data suggest that c-abl plays roles in the regulation of extracellular matrix expression and in the regulation of hematopoietic growth factors by stromal cells.


1991 ◽  
Vol 173 (3) ◽  
pp. 699-703 ◽  
Author(s):  
E P Sampaio ◽  
E N Sarno ◽  
R Galilly ◽  
Z A Cohn ◽  
G Kaplan

Thalidomide selectively inhibits the production of human monocyte tumor necrosis factor alpha (TNF-alpha) when these cells are triggered with lipopolysaccharide and other agonists in culture. 40% inhibition occurs at the clinically achievable dose of the drug of 1 micrograms/ml. In contrast, the amount of total protein and individual proteins labeled with [35S]methionine and expressed on SDS-PAGE are not influenced. The amounts of interleukin 1 beta (IL-1 beta), IL-6, and granulocyte/macrophage colony-stimulating factor produced by monocytes remain unaltered. The selectivity of this drug may be useful in determining the role of TNF-alpha in vivo and modulating its toxic effects in a clinical setting.


2002 ◽  
Vol 76 (11) ◽  
pp. 5515-5521 ◽  
Author(s):  
Joshua M. Friedman ◽  
Marshall S. Horwitz

ABSTRACT Recombinant adenoviruses (Ads) are useful tools in gene transfer because they are able to infect a wide variety of tissues and cell types and do not require a replicating target cell. However, transgene expression is only transient due to host innate and acquired immune responses to the virus. Most recombinant Ads have deletions of early region 3 (E3) genes, allowing more space for insertion of the transgene. Although the E3 region is not necessary for infection, it has been observed that these “nonessential” genes have immunomodulatory properties. We demonstrate here that the E3 region of Ad inhibits the activation of NF-κB induced by tumor necrosis factor alpha (TNF-α) and interleukin-1. Ad E3 is able to prevent NF-κB from entering the nucleus, where it is normally active. Ad E3 also appears to function by preventing the activation of the kinase complex, IKK, which is responsible for phosphorylation of IκB that retains NF-κB in the cytoplasm in an inactive state. The prevention of NF-κB activation has been mapped to a complex of two of the seven E3 products, E3-10.4K and E3-14.5K (RIDα/β). These and other studies indicate that, by using Ad vectors containing the E3 region, it may be possible to reduce the harmful proinflammatory effects of TNF-α and other cytokines that compromise the use of Ad gene therapy vectors in vivo.


Diabetes ◽  
1993 ◽  
Vol 42 (7) ◽  
pp. 1026-1031 ◽  
Author(s):  
K. Yamada ◽  
N. Takane ◽  
S. Otabe ◽  
C. Inada ◽  
M. Inoue ◽  
...  

1994 ◽  
Vol 14 (10) ◽  
pp. 6561-6569
Author(s):  
L Klampfer ◽  
T H Lee ◽  
W Hsu ◽  
J Vilcek ◽  
S Chen-Kiang

Tumor necrosis factor alpha (TNF-alpha) and interleukin-1 (IL-1) activate transcription of the TSG-6 gene in normal human fibroblasts through a promoter region (-165 to -58) that encompasses an AP-1 and a NF-IL6 site. We show by deletion analysis and substitution mutagenesis that both sites are necessary for activation by TNF-alpha. Activation by IL-1 requires the NF-IL6 site and is enhanced by the AP-1 site. These results suggest that the NF-IL6 and AP-1 family transcription factors functionally cooperate to mediate TNF-alpha and IL-1 signals. Consistent with this possibility, IL-1 and TNF-alpha markedly increase the binding of Fos and Jun to the AP-1 site, and NF-IL6 activates the native TSG-6 promoter. Activation by NF-IL6 requires an intact NF-IL6 site and is modulated by the ratio of activator to inhibitor NF-IL6 isoforms that are translated from different in-frame AUGs. However, the inhibitor isoform can also bind to the AP-1 site and repress AP-1 site-mediated transcription. The finding that the inhibitor isoform antagonizes activation of the native TSG-6 promoter by IL-1 and TNF-alpha suggests that NF-IL6 has a physiologic role in these cytokine responses. Thus, the functionally distinct NF-IL6 isoforms cooperate with Fos and Jun to positively and negatively regulate the native TSG-6 promoter by TNF-alpha and IL-1.


Sign in / Sign up

Export Citation Format

Share Document