scholarly journals A Toxoplasma gondii-derived factor(s) stimulates immune downregulation: an in vitro model.

1995 ◽  
Vol 63 (9) ◽  
pp. 3442-3447 ◽  
Author(s):  
S Haque ◽  
A Haque ◽  
L H Kasper
1998 ◽  
Vol 180 (4) ◽  
pp. 299-305 ◽  
Author(s):  
Bodo Kurz ◽  
Wolfgang Böckeler ◽  
Eberhard Buse

1994 ◽  
Vol 10 (7) ◽  
pp. 281-285 ◽  
Author(s):  
T.D. McHugh ◽  
R.E. Holliman ◽  
P.D. Butcher

2021 ◽  
Author(s):  
Thomas Mouveaux ◽  
Emmanuel Roger ◽  
Alioune Gueye ◽  
Fanny Eysert ◽  
Ludovic Huot ◽  
...  

Toxoplasma gondii is a eukaryotic parasite that form latent cyst in the brain of immunocompetent individuals. The latent parasites infection of the immune privileged central nervous system is linked to most complications. With no drug currently available to eliminate the latent cysts in the brain of infected hosts, the consequences of neurons long-term infection are unknown. It has long been known that T. gondii specifically differentiate into a latent form (bradyzoite) in neurons, but how the infected neuron is responding to the infection remain to be elucidated. We have established a new in vitro model resulting in the production of fully mature bradyzoites cysts in brain cells. Using dual, host and parasite, RNA-seq we characterized the dynamics of differentiation of the parasite, revealing the involvement of key pathways in this process. Moreover, we identified how the infected brain cells responded to the parasite infection revealing the drastic changes that take place. We showed that neuronal specific pathways are strongly affected, with synapse signaling being particularly affected, especially glutamatergic synapse. The establishment of this new in vitro model allows to investigate both the dynamics of the parasite differentiation and the specific response of neurons to the long term infection by this parasite.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document