scholarly journals Construction and Phase I Clinical Evaluation of the Safety and Immunogenicity of a Candidate Enterotoxigenic Escherichia coli Vaccine Strain Expressing Colonization Factor Antigen CFA/I

2006 ◽  
Vol 74 (2) ◽  
pp. 1062-1071 ◽  
Author(s):  
Arthur K. Turner ◽  
Juliet C. Beavis ◽  
Jonathan C. Stephens ◽  
Judith Greenwood ◽  
Cornelia Gewert ◽  
...  

ABSTRACT Oral delivery of toxin-negative derivatives of enterotoxigenic Escherichia coli (ETEC) that express colonization factor antigens (CFA) with deletions of the aroC, ompC, ompF, and toxin genes may be an effective approach to vaccination against ETEC-associated diarrhea. We describe the creation and characterization of an attenuated CFA/I-expressing ETEC vaccine candidate, ACAM2010, from a virulent isolate in which the heat-stable enterotoxin (ST) and CFA/I genes were closely linked and on the same virulence plasmid as the enteroaggregative E. coli heat-stable toxin (EAST1) gene. A new suicide vector (pJCB12) was constructed and used to delete the ST and EAST1 genes and to introduce defined deletion mutations into the aroC, ompC, and ompF chromosomal genes. A phase I trial, consisting of an open-label dose escalation phase in 18 adult outpatient volunteers followed by a placebo-controlled double-blind phase in an additional 31 volunteers, was conducted. The vaccine was administered in two formulations, fresh culture and frozen suspension. These were both well tolerated, with no evidence of significant adverse events related to vaccination. Immunoglobulin A (IgA) and IgG antibody-secreting cells specific for CFA/I were assayed by ELISPOT. Positive responses (greater than twofold increase) were seen in 27 of 37 (73%) subjects who received the highest dose level of vaccine (nominally 5 × 109 CFU). Twenty-nine of these volunteers were secreting culturable vaccine organisms at day 3 following vaccination; five were still positive on day 7, with a single isolation on day 13. This live attenuated bacterial vaccine is safe and immunogenic in healthy adult volunteers.

2000 ◽  
Vol 38 (1) ◽  
pp. 27-31
Author(s):  
Firdausi Qadri ◽  
Swadesh Kumar Das ◽  
A. S. G. Faruque ◽  
George J. Fuchs ◽  
M. John Albert ◽  
...  

ABSTRACT The prevalence of toxin types and colonization factors (CFs) of enterotoxigenic Escherichia coli (ETEC) was prospectively studied with fresh samples ( n = 4,662) obtained from a 2% routine surveillance of diarrheal stool samples over 2 years, from September 1996 to August 1998. Stool samples were tested by enzyme-linked immunoassay techniques and with specific monoclonal antibodies for the toxins and CFs. The prevalence of ETEC was 14% ( n = 662), with over 70% of the strains isolated from children 0 to 5 years of age, of whom 93% were in the 0- to 3-year-old age range. Of the total ETEC isolates, 49.4% were positive for the heat-stable toxin (ST), 25.4% were positive for the heat-labile toxin (LT) only, and 25.2% were positive for both LT and ST. The rate of ETEC isolation peaked in the hot summer months of May to September and decreased in winter. About 56% of the samples were positive for 1 or more of the 12 CFs that were screened for. The coli surface antigens CS4, CS5, and/or CS6 of the colonization factor antigen (CFA)/IV complex were most prevalent (incidence, 31%), followed by CFA/I (23.5%) and coli surface antigens CS1, CS2, and CS3 of CFA/II (21%). In addition, other CFs detected in decreasing order were CS7 (8%), CS14 (PCFO166) (7%), CS12 (PCFO159) (4%), CS17 (3%), and CS8 (CFA/III) (2.7%). The ST- or LT- and ST-positive ETEC isolates expressed the CFs known to be the most prevalent (i.e., CFA/I, CFA/II, and CFA/IV), while the strains positive for LT only did not. Among children who were infected with ETEC as the single pathogen, a trend of relatively more severe disease in children infected with ST-positive ( P < 0.001) or LT- and ST-positive ( P < 0.001) ETEC isolates compared to the severity of the disease in children infected with LT only-positive ETEC isolates was seen. This study supports the fact that ETEC is still a major cause of childhood diarrhea in Bangladesh, especially in children up to 3 years of age, and that measures to prevent such infections are needed in developing countries.


2006 ◽  
Vol 74 (2) ◽  
pp. 869-875 ◽  
Author(s):  
Kenneth P. Allen ◽  
Mildred M. Randolph ◽  
James M. Fleckenstein

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) infections are a significant cause of diarrheal disease and infant mortality in developing countries. Studies of ETEC pathogenesis relevant to vaccine development have been greatly hampered by the lack of a suitable small-animal model of infection with human ETEC strains. Here, we demonstrate that adult immunocompetent outbred mice can be effectively colonized with the prototypical human ETEC H10407 strain (colonization factor antigen I; heat-labile and heat-stable enterotoxin positive) and that production of heat-labile holotoxin provides a significant advantage in colonization of the small intestine in this model.


2011 ◽  
Vol 18 (12) ◽  
pp. 2128-2135 ◽  
Author(s):  
Arthur K. Turner ◽  
Jonathan C. Stephens ◽  
Juliet C. Beavis ◽  
Judith Greenwood ◽  
Cornelia Gewert ◽  
...  

ABSTRACTLive attenuated oral enterotoxigenicEscherichia coli(ETEC) vaccines have been demonstrated to be safe and immunogenic in human volunteers and to provide a viable approach to provide protection against this important pathogen. This report describes the construction of new ETEC vaccine candidate strains from recent clinical isolates and their characterization. All known genes for ETEC toxins were removed, and attenuating deletion mutations were made in thearoC,ompC, andompFchromosomal genes. An isolate expressing coli surface antigen 2 (CS2), CS3, heat-labile toxin (LT), heat-stable toxin (ST), and enteroaggregativeEscherichia coliheat-stable toxin 1 (EAST1) was attenuated to generate ACAM2007. The subsequent insertion of the operon encoding CS1 created ACAM2017, and this was further modified by the addition of an expression cassette containing theeltBgene, encoding a pentamer of B subunits of LT (LTB), to generate ACAM2027. Another isolate expressing CS5, CS6, LT, ST, and EAST1 was attenuated to generate ACAM2006, from which a lysogenic prophage was deleted to create ACAM2012 and an LTB gene was introduced to form ACAM2022. Finally, a previously described vaccine strain, ACAM2010, had theeltBgene incorporated to generate ACAM2025. All recombinant genes were incorporated into the chromosomal sites of the attenuating mutations to ensure maximal genetic stability. The expression of the recombinant antigens and the changes in plasmids accompanying the deletion of toxin genes are described. Strains ACAM2025, ACAM2022, and ACAM2027 have been combined to create the ETEC vaccine formulation ACE527, which has recently successfully completed a randomized, double-blind, placebo-controlled phase I trial and is currently undergoing a randomized, double-blind placebo-controlled phase II challenge trial, both in healthy adult volunteers.


2006 ◽  
Vol 74 (2) ◽  
pp. 994-1000 ◽  
Author(s):  
Robin McKenzie ◽  
A. Louis Bourgeois ◽  
Fayette Engstrom ◽  
Eric Hall ◽  
H. Sunny Chang ◽  
...  

ABSTRACTA vaccine against enterotoxigenicEscherichia coli(ETEC) is needed to prevent diarrheal illness among children in developing countries and at-risk travelers. Two live attenuated ETEC strains, PTL002 and PTL003, which express the ETEC colonization factor CFA/II, were evaluated for safety and immunogenicity. In a randomized, double-blind, placebo-controlled trial, 19 subjects ingested one dose, and 21 subjects ingested two doses (days 0 and 10) of PTL-002 or PTL-003 at 2 × 109CFU/dose. Anti-CFA/II mucosal immune responses were determined from the number of antibody-secreting cells (ASC) in blood measured by enzyme-linked immunospot assay, the antibody in lymphocyte supernatants (ALS) measured by enzyme-linked immunosorbent assay (ELISA), and fecal immunoglobulin A (IgA) levels determined by ELISA. Time-resolved fluorescence (TRF) ELISA was more sensitive than standard colorimetric ELISA for measuring serum antibody responses to CFA/II and its components, CS1 and CS3. Both constructs were well tolerated. Mild diarrhea occurred after 2 of 31 doses (6%) of PTL-003. PTL-003 produced more sustained intestinal colonization than PTL-002 and better IgA response rates: 90% versus 55% (P= 0.01) for anti-CFA/II IgA-ASCs, 55% versus 30% (P= 0.11) for serum anti-CS1 IgA by TRF, and 65% versus 25% (P= 0.03) for serum anti-CS3 IgA by TRF. Serum IgG response rates to CS1 or CS3 were 55% in PTL-003 recipients and 15% in PTL-002 recipients (P = 0.02). Two doses of either strain were not significantly more immunogenic than one. Based on its superior immunogenicity, which was comparable to that of a virulent ETEC strain and other ETEC vaccine candidates, PTL-003 will be developed further as a component of a live, oral attenuated ETEC vaccine.


2009 ◽  
Vol 78 (1) ◽  
pp. 316-325 ◽  
Author(s):  
Weiping Zhang ◽  
Chengxian Zhang ◽  
David H. Francis ◽  
Ying Fang ◽  
David Knudsen ◽  
...  

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and farm animals. E. coli fimbriae, or colonization factor antigens (CFAs), and enterotoxins, including heat-labile enterotoxins (LT) and heat-stable enterotoxins (ST), are the key virulence factors in ETEC diarrhea. Unlike fimbriae or LT, STa has not often been included as an antigen in development of vaccines against ETEC diarrhea because of its poor immunogenicity. STa becomes immunogenic only after being coupled with a strongly immunogenic carrier protein. However, native or shorter STa antigens either had to retain toxic activity in order to become antigenic or elicited anti-STa antibodies that were not sufficiently protective. In this study, we genetically mutated the porcine LT (pLT) gene for a pLT192(R→G) toxoid and the porcine STa (pSTa) gene for three full-length pSTa toxoids [STa11(N→K), STa12(P→F), and STa13(A→Q)] and used the full-length pLT192 as an adjuvant to carry the pSTa toxoid for pLT192:pSTa-toxoid fusion antigens. Rabbits immunized with pLT192:pSTa12 or pLT192:pSTa13 fusion protein developed high titers of anti-LT and anti-STa antibodies. Furthermore, rabbit antiserum and antifecal antibodies were able to neutralize purified cholera toxin (CT) and STa toxin. In addition, preliminary data suggested that suckling piglets born by a sow immunized with the pLT192:pSTa13 fusion antigen were protected when challenged with an STa-positive ETEC strain. This study demonstrated that pSTa toxoids are antigenic when fused with a pLT toxoid and that the elicited anti-LT and anti-STa antibodies were protective. This fusion strategy could provide instructive information to develop effective toxoid vaccines against ETEC-associated diarrhea in animals and humans.


2011 ◽  
Vol 18 (12) ◽  
pp. 2118-2127 ◽  
Author(s):  
Clayton Harro ◽  
David Sack ◽  
A. Louis Bourgeois ◽  
R. Walker ◽  
Barbara DeNearing ◽  
...  

ABSTRACTImmune responses against colonization factors (CFs) and the nontoxic B component of the enterotoxigenicEscherichia coli(ETEC) heat-labile toxin (LTB) are considered to be important for immunity against diarrhea caused by ETEC. Individual live attenuated ETEC derivatives that have had their toxin genes removed and whosearoC,ompC, andompFgenes are deleted have shown promise as vaccines against ETEC. The development of such strains has culminated in the testing of a three-strain-combination live attenuated vaccine known as ACE527, comprised of strains ACAM2025 expressing colonization factor antigen I (CFA/I) and LTB; ACAM2022, expressing CS5, CS6, and LTB; and ACAM2027, expressing CS1, CS2, CS3, and LTB. The recombinant CF and LTB genes expressed in the three strains were inserted into the bacterial chromosome to ensure their stable inheritance and expression without the requirement for any selection. ACE527 has been tested in a randomized placebo-controlled, double-blind, phase I safety and immunogenicity study in healthy adult volunteers and proved to be well tolerated and immunogenic at dose levels of 1010and 1011total CFU. There was no indication of strain interference on the basis of fecal shedding patterns, with all three being detected in the feces of 50% and 83% of low- and high-dose vaccine recipients, respectively. Similarly, strong immune responses to LTB and to CFs expressed on all three constituent strains were induced, with at least 50% of subjects in the high-dose group responding to LTB, CFA/I, CS3, and CS6.


2021 ◽  
Author(s):  
Yoshihiko Tanimoto ◽  
Miyoko Inoue ◽  
Kana Komatsu ◽  
Atsuyuki Odani ◽  
Takayuki Wada ◽  
...  

Enterotoxigenic Escherichia coli (ETEC) strains that express various fimbrial or nonfimbrial colonization factors and enterotoxins are critical causes of diarrheal diseases. Human ETEC serotype O169:H41 (O169) has been a representative of epidemic ETEC worldwide; the organism shows massive adherence to HEp-2 cells similar to enteroaggregative E. coli. Previously, we determined the complete sequence of the unstable virulence plasmid, pEntYN10. The plasmid included a unique set of genes encoding a novel colonization factor (CF) resembling K88 (F4) of porcine ETEC, in addition to CS6, a well-known representative CF of human ETEC, and another novel CF similar to CS8 (CFA/III) of human ETEC. To determine whether the K88-like CF (after this, K88 O169) allows the organisms to infect domestic animals like the original K88-harboring strains that can cause diarrhea in piglets, samples were tested for antibodies against recombinant proteins of possible paralogous adhesins, FaeG1 and FaeG2, from K88O169 and the FaeG of typical K88 (F4). The seroepidemiological study using recombinant antigens (two paralogs FaeG1 and FaeG2 from K88O169) showed reactivity of porcine (18.0%) and bovine (17.1%) sera to K88O169 FaeG1 and/or FaeG2 antigens on indirect ELISA tests. These results suggest that E. coli with K88O169 adhesin can infect various hosts, including pigs and cattle. This is the first report of domestic animals having antibodies to K88O169 of human ETEC. Although human ETEC had been thought to be distinguished from those of domestic animals based on colonization factors, zoonotic strains may conceal themselves among human ETEC organisms. The concept of One Health should be adopted to intervene in ETEC infections among animals and humans.


Sign in / Sign up

Export Citation Format

Share Document