scholarly journals Mapping of a Domain Required for Protein-Protein Interactions and Inhibitory Activity of a Helicobacter pylori Dominant-Negative VacA Mutant Protein

2006 ◽  
Vol 74 (4) ◽  
pp. 2093-2101 ◽  
Author(s):  
Victor J. Torres ◽  
Mark S. McClain ◽  
Timothy L. Cover

ABSTRACT The Helicobacter pylori VacA toxin is an 88-kDa secreted protein that causes multiple alterations in mammalian cells and is considered an important virulence factor in the pathogenesis of peptic ulcer disease and gastric cancer. We have shown previously that a VacA mutant protein lacking amino acids 6 to 27 (Δ6-27p88 VacA) is able to inhibit many activities of wild-type VacA in a dominant-negative manner. Analysis of a panel of C-terminally truncated Δ6-27p88 VacA proteins indicated that a fragment containing amino acids 1 to 478 (Δ6-27p48) exhibited a dominant-negative phenotype similar to that of the full-length Δ6-27p88 VacA protein. In contrast, a shorter VacA fragment lacking amino acids 6 to 27 (Δ6-27p33) did not exhibit detectable inhibitory activity. The Δ6-27p48 protein physically interacted with wild-type p88 VacA, whereas the Δ6-27p33 protein did not. Mutational analysis indicated that amino acids 351 to 360 are required for VacA protein-protein interactions and for dominant-negative inhibitory activity. The C-terminal portion (p55 domain) of wild-type p88 VacA could complement either Δ6-27p33 or Δ(6-27/351-360)p48, reconstituting dominant-negative inhibitory activity. Collectively, our data provide strong evidence that the inhibitory properties of dominant-negative VacA mutant proteins are dependent on interactions between the mutant VacA proteins and wild-type VacA, and they allow mapping of a domain involved in the formation of oligomeric VacA complexes.

2002 ◽  
Vol 70 (7) ◽  
pp. 3824-3832 ◽  
Author(s):  
David C. Willhite ◽  
Dan Ye ◽  
Steven R. Blanke

ABSTRACT The Helicobacter pylori vacuolating cytotoxin (VacA) binds and enters mammalian cells to induce cellular vacuolation. To investigate the quaternary structure of VacA within the intracellular environment where toxin cytotoxicity is elaborated, we employed fluorescence resonance energy transfer (FRET) microscopy. HeLa cells coexpressing full-length and truncated forms of VacA fused to cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP) were analyzed for FRET to indicate direct associations. These studies revealed that VacA-CFP and VacA-YFP interact within vacuolated cells, supporting the belief that monomer associations at an intracellular site are important for the toxin's vacuolating activity. In addition, the two fragments of proteolytically nicked VacA, p37 and p58, interact when coexpressed within mammalian cells. Because p37 and p58 function in trans when expressed separately within mammalian cells, these data suggest that the mechanism by which these two fragments induce vacuolation requires direct association. FRET microscopy also demonstrated interactions between mutant forms of VacA, as well as wild-type VacA with mutant forms of the toxin within vacuolated cells. Finally, a dominant-negative form of the toxin directly associates with wild-type VacA in cells where vacuolation was not detectable, suggesting that the formation of complexes comprising wild-type and dominant-negative forms of toxin acts to block intracellular toxin function.


2007 ◽  
Vol 81 (7) ◽  
pp. 3198-3205 ◽  
Author(s):  
Anna K. Överby ◽  
Ralf F. Pettersson ◽  
Etienne P. A. Neve

ABSTRACT We have analyzed the importance of specific amino acids in the cytoplasmic tail of the glycoprotein GN for packaging of ribonucleoproteins (RNPs) into virus-like particles (VLPs) of Uukuniemi virus (UUK virus), a member of the Bunyaviridae family. In order to study packaging, we added the GN/GC glycoprotein precursor (p110) to a polymerase I-driven minigenome rescue system to generate VLPs that are released into the supernatant. These particles can infect new cells, and reporter gene expression can be detected. To determine the role of UUK virus glycoproteins in RNP packaging, we performed an alanine scan of the glycoprotein GN cytoplasmic tail (amino acids 1 to 81). First, we discovered three regions in the tail (amino acids 21 to 25, 46 to 50, and 71 to 81) which are important for minigenome transfer by VLPs. Further mutational analysis identified four amino acids that were important for RNP packaging. These amino acids are essential for the binding of nucleoproteins and RNPs to the glycoprotein without affecting the morphology of the particles. No segment-specific interactions between the RNA and the cytoplasmic tail could be observed. We propose that VLP systems are useful tools for analyzing protein-protein interactions important for packaging of viral genome segments, assembly, and budding of other members of the Bunyaviridae family.


2003 ◽  
Vol 185 (18) ◽  
pp. 5491-5499 ◽  
Author(s):  
Sun Nyunt Wai ◽  
Marie Westermark ◽  
Jan Oscarsson ◽  
Jana Jass ◽  
Elke Maier ◽  
...  

ABSTRACT We report studies of the subcellular localization of the ClyA cytotoxic protein and of mutations causing defective translocation to the periplasm in Escherichia coli. The ability of ClyA to translocate to the periplasm was abolished in deletion mutants lacking the last 23 or 11 amino acid residues of the C-terminal region. A naturally occurring ClyA variant lacking four residues (183 to 186) in a hydrophobic subdomain was retained mainly in the cytosolic fraction. These mutant proteins displayed an inhibiting effect on the expression of the hemolytic phenotype of wild-type ClyA. Studies in vitro with purified mutant ClyA proteins revealed that they were defective in formation of pore assemblies and that their activity in hemolysis assays and in single-channel conductance tests was at least 10-fold lower than that of the wild-type ClyA. Tests with combinations of the purified proteins indicated that mutant and wild-type ClyA interacted and that formation of heteromeric assemblies affected the pore-forming activity of the wild-type protein. The observed protein-protein interactions were consistent with, and provided a molecular explanation for, the dominant negative feature of the mutant ClyA variants.


1993 ◽  
Vol 13 (12) ◽  
pp. 7874-7880 ◽  
Author(s):  
S Pesce ◽  
R Benezra

Id1, a helix-loop-helix (HLH) protein which lacks a DNA binding domain, has been shown to negatively regulate other members of the HLH family by direct protein-protein interactions, both in vitro and in vivo. In this study, we report the results of site-directed mutagenesis experiments aimed at defining the regions of Id1 which are important for its activity. We have found that the HLH domain of Id1 is necessary and nearly sufficient for its activity. In addition, we show that two amino acid residues at the amino terminus of the Id1 loop are critical for its activity, perhaps by specifying the correct dimerization partners. In this regard, replacing the first four amino acids of the loops of the basic HLH proteins E12 and E47 with the corresponding amino acids of Id1 confers Id1 dimerization specificity. These studies point to the loop region as an important structural and functional element of the Id subfamily of HLH proteins.


2005 ◽  
Vol 187 (2) ◽  
pp. 697-706 ◽  
Author(s):  
Steven W. Matson ◽  
Heather Ragonese

ABSTRACT The F-plasmid-encoded TraI protein, also known as DNA helicase I, is a bifunctional protein required for conjugative DNA transfer. The enzyme catalyzes two distinct but functionally related reactions required for the DNA processing events associated with conjugation: the site- and strand-specific transesterification (relaxase) reaction that provides the nick required to initiate strand transfer and a processive 5′-to-3′ helicase reaction that provides the motive force for strand transfer. Previous studies have identified the relaxase domain, which encompasses the first ∼310 amino acids of the protein. The helicase-associated motifs lie between amino acids 990 and 1450. The function of the region between amino acids 310 and 990 and the region from amino acid 1450 to the C-terminal end is unknown. A protein lacking the C-terminal 252 amino acids (TraIΔ252) was constructed and shown to have essentially wild-type levels of transesterase and helicase activity. In addition, the protein was capable of a functional interaction with other components of the minimal relaxosome. However, TraIΔ252 was not able to support conjugative DNA transfer in genetic complementation experiments. We conclude that TraIΔ252 lacks an essential C-terminal domain that is required for DNA transfer. We speculate this domain may be involved in essential protein-protein interactions with other components of the DNA transfer machinery.


1993 ◽  
Vol 13 (12) ◽  
pp. 7874-7880
Author(s):  
S Pesce ◽  
R Benezra

Id1, a helix-loop-helix (HLH) protein which lacks a DNA binding domain, has been shown to negatively regulate other members of the HLH family by direct protein-protein interactions, both in vitro and in vivo. In this study, we report the results of site-directed mutagenesis experiments aimed at defining the regions of Id1 which are important for its activity. We have found that the HLH domain of Id1 is necessary and nearly sufficient for its activity. In addition, we show that two amino acid residues at the amino terminus of the Id1 loop are critical for its activity, perhaps by specifying the correct dimerization partners. In this regard, replacing the first four amino acids of the loops of the basic HLH proteins E12 and E47 with the corresponding amino acids of Id1 confers Id1 dimerization specificity. These studies point to the loop region as an important structural and functional element of the Id subfamily of HLH proteins.


1998 ◽  
Vol 18 (5) ◽  
pp. 2768-2778 ◽  
Author(s):  
Qimin Zhan ◽  
I-Tsuen Chen ◽  
Michael J. Antinore ◽  
Albert J. Fornace

ABSTRACT The GADD45 gene is a growth arrest-associated gene that is induced by certain DNA-damaging agents and other stresses, such as starvation, in all mammalian cells. In addition to a strong p53-binding element in an intronic sequence, we have recently found that p53, while not required or sufficient alone, may contribute to the stress responsiveness of the promoter. Much of the responsiveness was localized to a GC-rich motif in the proximal promoter which contains multiple Egr1 sites and a larger WT1 site; this 20-bp WT1 motif is identical to the WT1-binding site in the PDGF-A gene. In extracts from a human breast carcinoma cell line expressing p53 and WT1, which is known to associate with p53 in vivo, evidence was obtained that these proteins are in a complex that binds this 20-bp element. A combination of p53 and WT1 expression vectors strongly induced a GADD45-reporter construct, while mutation of the WT1-Egr1 site in the promoter prevented this induction. Abrogation of p53 function by a dominant-negative vector or abrogation of WT1 function by an antisense vector markedly reduced the induction of this promoter. Since p53 does not bind directly to the promoter, these results indicate that p53 can contribute to the positive regulation of a promoter by protein-protein interactions.


2003 ◽  
Vol 16 (5) ◽  
pp. 577-577
Author(s):  
J. Tavernier ◽  
S. Eyckerman ◽  
I. Lemmens ◽  
S. Lievens ◽  
J. Vandekerckhove ◽  
...  

1991 ◽  
Vol 11 (3) ◽  
pp. 1578-1589
Author(s):  
L D Fresco ◽  
D S Harper ◽  
J D Keene

Recombinant A' protein could be reconstituted into U2 small nuclear ribonucleoprotein particles (snRNPs) upon addition to HeLa cell extracts as determined by coimmunoprecipitation and particle density; however, direct binding to U2 RNA could not be demonstrated except in the presence of the U2 snRNP B" protein. Mutational analysis indicated that a central core region of A' was required for particle reconstitution. This region consists of five tandem repeats of approximately 24 amino acids each that exhibit a periodicity of leucine and asparagine residues that is distinct from the leucine zipper. Similar leucine-rich (Leu-Leu motif) repeats are characteristic of a diverse array of soluble and membrane-associated proteins from yeasts to humans but have not been reported previously to reside in nuclear proteins. Several of these proteins, including Toll, chaoptin, RNase/angiogenin inhibitors, lutropin-choriogonadotropin receptor, carboxypeptidase N, adenylyl cyclase, CD14, and human immunodeficiency virus type 1 Rev, may be involved in protein-protein interactions. Our findings suggest that in cell extracts the Leu-Leu motif of A' is required for reconstitution with U2 snRNPs and perhaps with other components involved in splicing through protein-protein interactions.


Sign in / Sign up

Export Citation Format

Share Document