scholarly journals Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family

2017 ◽  
Vol 199 (21) ◽  
Author(s):  
Amaya M. Garcia Costas ◽  
Saroj Poudel ◽  
Anne-Frances Miller ◽  
Gerrit J. Schut ◽  
Rhesa N. Ledbetter ◽  
...  

ABSTRACT Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs.

2012 ◽  
Vol 78 (6) ◽  
pp. 1724-1732 ◽  
Author(s):  
Arnau Bassegoda ◽  
F. I. Javier Pastor ◽  
Pilar Diaz

ABSTRACTBacterial lipases constitute the most important group of biocatalysts for synthetic organic chemistry. Accordingly, there is substantial interest in developing new valuable lipases. Considering the lack of information concerning the lipases of the genusRhodococcusand taking into account the interest raised by the enzymes produced by actinomycetes, a search for putative lipase-encoding genes fromRhodococcussp. strain CR-53 was performed. We isolated, cloned, purified, and characterized LipR, the first lipase described from the genusRhodococcus. LipR is a mesophilic enzyme showing preference for medium-chain-length acyl groups without showing interfacial activation. It displays good long-term stability and high tolerance for the presence of ions and chemical agents in the reaction mixture. Amino acid sequence analysis of LipR revealed that it displays four unique amino acid sequence motifs that clearly separate it from any other previously described family of bacterial lipases. Using bioinformatics tools, LipR could be related only to several uncharacterized putative lipases from different bacterial origins, all of which display the four blocks of consensus amino acid sequence motifs that contribute to define a new family of bacterial lipases, namely, family X. Therefore, LipR is the first characterized member of the new bacterial lipase family X. Further confirmation of this new family of lipases was performed after cloningBurkholderia cenocepaciaputative lipase, bearing the same conserved motifs and clustering in family X. Interestingly, all lipases grouping in the new bacterial lipase family X display a Y-type oxyanion hole, a motif conserved in theCandida antarcticalipase clan but never found among bacterial lipases. This observation contributes to confirm that LipR and its homologs belong to a new family of bacterial lipases.


1993 ◽  
Vol 9 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Mikita Suyama ◽  
Atsushi Ogiwara ◽  
Takaaki Nishioka ◽  
Jun'ichi Oda

2004 ◽  
Vol 85 (8) ◽  
pp. 2191-2197 ◽  
Author(s):  
Tomoko Ogawa ◽  
Yoshimi Tomita ◽  
Mineyuki Okada ◽  
Kuniko Shinozaki ◽  
Hiroko Kubonoya ◽  
...  

To investigate the prevalence of bovine papillomavirus (BPV) in bovine papilloma and healthy skin, DNA extracted from teat papillomas and healthy teat skin swabs was analysed by PCR using the primer pairs FAP59/FAP64 and MY09/MY11. Papillomavirus (PV) DNA was detected in all 15 papilloma specimens using FAP59/FAP64 and in 8 of the 15 papilloma specimens using MY09/MY11. In swab samples, 21 and 8 of the 122 samples were PV DNA positive using FAP59/FAP64 and MY09/MY11, respectively. Four BPV types (BPV-1, -3, -5 and -6), two previously identified putative BPV types (BAA1 and -5) and 11 putative new PV types (designated BAPV1 to -10 and BAPV11MY) were found in the 39 PV DNA-positive samples. Amino acid sequence alignments of the putative new PV types with reported BPVs and phylogenetic analyses of the putative new PV types with human and animal PV types showed that BAPV1 to -10 and BAPV11MY are putative new BPV types. These results also showed the genomic diversity and extent of subclinical infection of BPV.


2019 ◽  
Author(s):  
Manasvi Verma ◽  
Junhong Choi ◽  
Kyle A. Cottrell ◽  
Zeno Lavagnino ◽  
Erica N. Thomas ◽  
...  

AbstractIt is generally assumed that translation efficiency is governed by translation initiation. However, the efficiency of protein synthesis is regulated by multiple factors including tRNA abundance, codon composition, mRNA motifs and amino-acid sequence1–4. These factors influence the rate of protein synthesis beyond the initiation phase of translation, typically by modulating the rate of peptide-bond formation and to a lesser extent that of translocation. The slowdown in translation during the early elongation phase, known as the 5’ translational ramp, likely contributes to the efficiency of protein synthesis 5–9. Multiple mechanisms, which could explain the molecular basis for this translational ramp, have been proposed that include tRNA abundance bias6,9, the rate of translation initiation10–15, mRNA and ribosome structure 11,12,14,16–18, or retention of initiation factors during early elongation events 19. Here, we show that the amount of synthesized protein (translation efficiency) depends on a short translational ramp that comprises the first 5 codons in mRNA. Using a library of more than 250,000 reporter sequences combined with in vitro and in vivo protein expression assays, we show that differences in the short ramp can lead to 3 to 4 orders of magnitude changes in protein abundance. The observed difference is not dependent on tRNA abundance, efficiency of translation initiation, or overall mRNA structure. Instead, we show that translation is regulated by amino-acid-sequence composition and local mRNA sequence. Single-molecule measurements of translation kinetics indicate substantial pausing of ribosome and abortion of protein synthesis on the 4th or 5th codon for distinct amino acid or nucleotide compositions. Introduction of preferred sequence motifs, only at the exact positions within the mRNA, improves protein synthesis for recombinant proteins, indicating an evolutionarily conserved mechanism for controlling translational efficiency.


1999 ◽  
Vol 181 (22) ◽  
pp. 6977-6986 ◽  
Author(s):  
Susanne Wilhelm ◽  
Jan Tommassen ◽  
Karl-Erich Jaeger

ABSTRACT A lipase-negative deletion mutant of Pseudomonas aeruginosa PAO1 still showed extracellular lipolytic activity toward short-chain p-nitrophenylesters. By screening a genomic DNA library of P. aeruginosa PAO1, an esterase gene, estA, was identified, cloned, and sequenced, revealing an open reading frame of 1,941 bp. The product ofestA is a 69.5-kDa protein, which is probably processed by removal of an N-terminal signal peptide to yield a 67-kDa mature protein. A molecular mass of 66 kDa was determined for35S-labeled EstA by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The amino acid sequence of EstA indicated that the esterase is a member of a novel GDSL family of lipolytic enzymes. The estA gene showed high similarity to an open reading frame of unknown function located in thetrpE-trpG region of P. putida and to a gene encoding an outer membrane esterase of Salmonella typhimurium. Amino acid sequence alignments led us to predict that this esterase is an autotransporter protein which possesses a carboxy-terminal β-barrel domain, allowing the secretion of the amino-terminal passenger domain harboring the catalytic activity. Expression of estA in P. aeruginosa andEscherichia coli and subsequent cell fractionation revealed that the enzyme was associated with the cellular membranes. Trypsin treatment of whole cells released a significant amount of esterase, indicating that the enzyme was located in the outer membrane with the catalytic domain exposed to the surface. To our knowledge, this esterase is unique in that it exemplifies in P. aeruginosa(i) the first enzyme identified in the outer membrane and (ii) the first example of a type IV secretion mechanism.


2021 ◽  
Author(s):  
Jared Weaver ◽  
Chi-Yun Lin ◽  
Kaitlyn M. Faries ◽  
Irimpan Mathews ◽  
Silvia Russi ◽  
...  

Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine close to an essential electron transfer component (M210) via its replacement with site-specific genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and x-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild-type. Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via an approximately 4 ps and 20 ps population to produce the charge-separated state P+HA- in all variants. Global analysis indicates that in the 4 ps population P+HA- forms through a 2-step process P* –> P+BA– –> P+HA-, while in the 20 ps population it forms via a 1-step P* –> P+HA– superexchange mechanism. The percentage of P* population that decays via the superexchange route varies from approximately 25% to 45% among variants while in wild-type this percentage is approximately 15%. Increases in the P* population which decays via superexchange correlates with increases in free energy of the P+BA– intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an approximately 110 meV increase in the free energy of P+BA– along with a dramatic diminution of the 1030 nm transient absorption band indicative of P+BA– formation. Collectively this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.<br>


2014 ◽  
Vol 80 (23) ◽  
pp. 7142-7153 ◽  
Author(s):  
Taichi Yoshikata ◽  
Kazuya Suzuki ◽  
Naofumi Kamimura ◽  
Masahiro Namiki ◽  
Shojiro Hishiyama ◽  
...  

ABSTRACTSphingobiumsp. strain SYK-6 is able to assimilate lignin-derived biaryls, including a biphenyl compound, 5,5′-dehydrodivanillate (DDVA). Previously,ligXa(SLG_07770), which is similar to the gene encoding oxygenase components of Rieske-type nonheme iron aromatic-ring-hydroxylating oxygenases, was identified to be essential for the conversion of DDVA; however, the genes encoding electron transfer components remained unknown. Disruption of putative electron transfer component genes scattered through the SYK-6 genome indicated that SLG_08500 and SLG_21200, which showed approximately 60% amino acid sequence identities with ferredoxin and ferredoxin reductase of dicambaO-demethylase, were essential for the normal growth of SYK-6 on DDVA. LigXa and the gene products of SLG_08500 (LigXc) and SLG_21200 (LigXd) were purified and were estimated to be a trimer, a monomer, and a monomer, respectively. LigXd contains FAD as the prosthetic group and showed much higher reductase activity toward 2,6-dichlorophenolindophenol with NADH than with NADPH. A mixture of purified LigXa, LigXc, and LigXd converted DDVA into 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl in the presence of NADH, indicating that DDVAO-demethylase is a three-component monooxygenase. This enzyme requires Fe(II) for its activity and is highly specific for DDVA, with aKmvalue of 63.5 μM andkcatof 6.1 s−1. Genome searches in six other sphingomonads revealed genes similar toligXcandligXd(>58% amino acid sequence identities) with a limited number of electron transfer component genes, yet a number of diverse oxygenase component genes were found. This fact implies that these few electron transfer components are able to interact with numerous oxygenase components and the conserved LigXc and LigXd orthologs are important in sphingomonads.


2016 ◽  
Vol 29 (7) ◽  
pp. 263-270 ◽  
Author(s):  
Alexander Jarasch ◽  
Melanie Kopp ◽  
Evelyn Eggenstein ◽  
Antonia Richter ◽  
Michaela Gebauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document