scholarly journals Mutations in Flk, FlgG, FlhA, and FlhE That Affect the Flagellar Type III Secretion Specificity Switch in Salmonella enterica

2009 ◽  
Vol 191 (12) ◽  
pp. 3938-3949 ◽  
Author(s):  
Takanori Hirano ◽  
Shino Mizuno ◽  
Shin-Ichi Aizawa ◽  
Kelly T. Hughes

ABSTRACT Upon completion of the flagellar hook-basal body (HBB) structure, the flagellar type III secretion system switches from secreting rod/hook-type to filament-type substrates. The secretion specificity switch has been reported to occur prematurely (prior to HBB completion) in flk-null mutants (P. Aldridge, J. E. Karlinsey, E. Becker, F. F. Chevance, and K. T. Hughes, Mol. Microbiol. 60:630-643, 2006) and in distal rod gene gain-of-function mutants (flgG* mutants) that produce filamentous rod structures (F. F. Chevance, N. Takahashi, J. E. Karlinsey, J. Gnerer, T. Hirano, R. Samudrala, S. Aizawa, and K. T. Hughes, Genes Dev. 21:2326-2335, 2007). A fusion of β-lactamase (Bla) to the C terminus of the filament-type secretion substrate FlgM was used to select for mutants that would secrete FlgM-Bla into the periplasmic space and show ampicillin resistance (Apr). Apr resulted from null mutations in the flhE gene, C-terminal truncation mutations in the flhA gene, null and dominant mutations in the flk gene, and flgG* mutations. All mutant classes required the hook length control protein (FliK) and the rod cap protein (FlgJ) for the secretion specificity switch to occur. However, neither the hook (FlgE) nor the hook cap (FlgD) protein was required for premature FlgM-Bla secretion in the flgG* and flk mutant strains, but it was in the flhE mutants. Unexpectedly, when deletions of either flgE or flgD were introduced into flgG* mutant strains, filaments were able to grow directly on the filamentous rod structures.

2004 ◽  
Vol 72 (4) ◽  
pp. 2288-2302 ◽  
Author(s):  
Rosanna Mundy ◽  
Liljana Petrovska ◽  
Katherine Smollett ◽  
Nandi Simpson ◽  
Rebecca K. Wilson ◽  
...  

ABSTRACT Citrobacter rodentium is a member of a group of pathogens that colonize the lumen of the host gastrointestinal tract via attaching and effacing (A/E) lesion formation. C. rodentium, which causes transmissible colonic hyperplasia in mice, is used as an in vivo model system for the clinically significant A/E pathogens enterohemorrhagic and enteropathogenic Escherichia coli. These bacteria all contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes a type III secretion system that is designed to deliver effector proteins into eukaryotic host cells. These effectors are involved in the subversion of host eukaryotic cell functions to the benefit of the bacterium. In this study we used mutant strains to determine the effects of the C. rodentium LEE-encoded effectors EspF, EspG, EspH, and Map on virulence in the mouse model. In addition, we identified a novel secreted protein, EspI encoded outside the LEE, whose secretion is also dependent on a functional type III secretion system. Mutant strains with each of the effectors investigated were found to be outcompeted by wild-type bacteria in mixed-infection experiments in vivo, although the effects of EspF and EspH were only subtle. In single-infection experiments, we found that EspF, EspG, and EspH are not required for efficient colonization of the mouse colon or for the production of hyperplasia. In contrast, strains producing EspI and Map had significant colonization defects and resulted in dramatically reduced levels of hyperplasia, and they exhibited very different growth dynamics in mice than the wild-type strain exhibited.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1718 ◽  
Author(s):  
Julien R. Bergeron

The flagellum is a large proteinaceous organelle found at the surface of many bacteria, whose primary role is to allow motility through the rotation of a long extracellular filament. It is an essential virulence factor in many pathogenic species, and is also a priming component in the formation of antibiotic-resistant biofilms. The flagellum consists of the export apparatus on the cytosolic side; the basal body and rotor, spanning the bacterial membrane(s) and periplasm; and the hook-filament, that protrudes away from the bacterial surface. Formation of the basal body MS ring region, constituted of multiple copies of the protein FliF, is one of the initial steps of flagellum assembly. However, the precise architecture of FliF is poorly understood. Here, I report a bioinformatics analysis of the FliF sequence from various bacterial species, suggesting that its periplasmic region is composed of three globular domains. The first two are homologous to that of the type III secretion system injectisome proteins SctJ, and the third possesses a similar fold to that of the sporulation complex component SpoIIIAG. I also describe thatChlamydiapossesses an unusual FliF protein, lacking part of the SctJ homology domain and the SpoIIIAG-like domain, and fused to the rotor component FliG at its C-terminus. Finally, I have combined the sequence analysis of FliF with the EM map of the MS ring, to propose the first atomic model for the FliF oligomer, suggesting that FliF is structurally akin to a fusion of the two injectisome components SctJ and SctD. These results further define the relationship between the flagellum, injectisome and sporulation complex, and will facilitate future structural characterization of the flagellum basal body.


2006 ◽  
Vol 31 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Hua Zhu ◽  
Tim C.R. Conibear ◽  
Rani Bandara ◽  
Yulina Aliwarga ◽  
Fiona Stapleton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document