scholarly journals Two-component nature of bacteriophage T4 receptor activity in Escherichia coli K-12.

1979 ◽  
Vol 137 (1) ◽  
pp. 664-666 ◽  
Author(s):  
U Henning ◽  
K Jann
2010 ◽  
Vol 192 (13) ◽  
pp. 3329-3336 ◽  
Author(s):  
S. James L. Cariss ◽  
Chrystala Constantinidou ◽  
Mala D. Patel ◽  
Yuiko Takebayashi ◽  
Jon L. Hobman ◽  
...  

ABSTRACT Colicin E2-tolerant (known as Cet2) Escherichia coli K-12 mutants overproduce an inner membrane protein, CreD, which is believed to cause the Cet2 phenotype. Here, we show that overproduction of CreD in a Cet2 strain results from hyperactivation of the CreBC two-component regulator, but CreD overproduction is not responsible for the Cet2 phenotype. Through microarray analysis and gene knockout and overexpression studies, we show that overexpression of another CreBC-regulated gene, yieJ (also known as cbrC), causes the Cet2 phenotype.


2001 ◽  
Vol 47 (7) ◽  
pp. 680-684 ◽  
Author(s):  
Brian D Corbin ◽  
Robert JC McLean ◽  
Gary M Aron

An Escherichia coli K-12 biofilm was grown at a dilution rate of 0.028 h-1 for 48 h in a glucose-limited chemostat coupled to a modified Robbins' device to determine its susceptibility to infection by bacteriophage T4. Bacteriophage T4 at a multiplicity of infection (MOI) of 10 caused a log reduction in biofilm density (expressed as colony forming units (CFU) per cm2) at 90 min postinfection. After 6 h, a net decrease and equilibrium in viral titer was seen. When biofilms were exposed to T4 phage at a MOI of 100, viral titer doubled after 90 min. After 6 h, viral titers (expressed as plaque forming units (PFU) per cm2) stabilized at levels approximately one order of magnitude higher than seen at a MOI of 10. Scanning confocal laser microscopy images also indicated disruption of biofilm morphology following T4 infection with the effects being more pronounced at a MOI of 100 than at a MOI of 10. These results imply that biofilms under carbon limitation can act as natural reservoirs for bacteriophage and that bacteriophage can have some influence on biofilm morphology.Key words: bacteriophage T4, biofilm, biofilm morphology, bacteriophage ecology, carbon limitation.


2008 ◽  
Vol 190 (11) ◽  
pp. 3869-3876 ◽  
Author(s):  
Chris E. Noriega ◽  
Radomir Schmidt ◽  
Michael J. Gray ◽  
Li-Ling Chen ◽  
Valley Stewart

ABSTRACT NarX-NarL and NarQ-NarP are paralogous two-component regulatory systems that control Escherichia coli gene expression in response to the respiratory oxidants nitrate and nitrite. Nitrate stimulates the autophosphorylation rates of the NarX and NarQ sensors, which then phosphorylate the response regulators NarL and NarP to activate and repress target operon transcription. Here, we investigated both the autophosphorylation and dephosphorylation of soluble sensors in which the maltose binding protein (MBP) has replaced the amino-terminal transmembrane sensory domain. The apparent affinities (Km ) for ADP were similar for both proteins, about 2 μM, whereas the affinity of MBP-NarQ for ATP was lower, about 23 μM. At a saturating concentration of ATP, the rate constant of MBP-NarX autophosphorylation (about 0.5 × 10−4 s−1) was lower than that observed for MBP-NarQ (about 2.2 × 10−4 s−1). At a saturating concentration of ADP, the rate constant of dephosphorylation was higher than that of autophosphorylation, about 0.03 s−1 for MBP-NarX and about 0.01 s−1 for MBP-NarQ. For other studied sensors, the published affinities for ADP range from about 16 μM (KinA) to about 40 μM (NtrB). This suggests that only a small proportion of NarX and NarQ remain phosphorylated in the absence of nitrate, resulting in efficient response regulator dephosphorylation by the remaining unphosphorylated sensors.


2000 ◽  
Vol 182 (20) ◽  
pp. 5864-5871 ◽  
Author(s):  
George P. Munson ◽  
Deborah L. Lam ◽  
F. Wayne Outten ◽  
Thomas V. O'Halloran

ABSTRACT Using a genetic screen we have identified two chromosomal genes,cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pcooperon of E. coli; CopR and CopS from thecop operon, which provides copper resistance toPseudomonas syringae; and SilR and SilS from thesil locus, which provides silver ion resistance toSalmonella enterica serovar Typhimurium. The genescusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC(ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. Thecus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusCand additional downstream genes are homologous to known metal ion antiporters.


Sign in / Sign up

Export Citation Format

Share Document