scholarly journals Application of hybrid plasmids carrying glycolysis genes to ATP production by Escherichia coli

1982 ◽  
Vol 152 (1) ◽  
pp. 98-103
Author(s):  
M Shimosaka ◽  
Y Fukuda ◽  
K Murata ◽  
A Kimura

The closely linked structural genes of phosphofructokinase (pfkA) and triosephosphate isomerase (tpi) of Escherichia coli were separately cloned onto plasmid pBR322. By gene dosage effects, transformed cells of E. coli C600 with these pBR322 hybrid plasmids showed 7- and 16-fold increases in the specific activities of phosphofructokinase and triosephosphate isomerase, respectively, over the specific activities in C600. Dried preparations of E. coli cells dosed with these genes showed appreciably high ATP-regenerating activity.

1988 ◽  
Vol 175 (2) ◽  
pp. 355-362 ◽  
Author(s):  
Joost H. M. DELFT ◽  
Hans M. VERBEEK ◽  
Paul J. JONG ◽  
Denise S. SCHMIDT ◽  
Anneke TALENS ◽  
...  

1978 ◽  
Vol 133 (1) ◽  
pp. 81-84 ◽  
Author(s):  
N R Movva ◽  
E Katz ◽  
P L Asdourian ◽  
Y Hirota ◽  
M Inouye

Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


2000 ◽  
Vol 176 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Walter J. Muir

BackgroundMedicine is rapidly becoming molecular medicine, and little escapes the grasp of modern genetics. Most disorders associated with learning disability have at least a genetic component influencing their expression; in many disorders, disturbances of genetic mechanisms play a pivotal role.AimsDynamic mutations, imprinting mechanisms and gene-dosage effects are explained with reference to genetic disorders that lead to learning disability.MethodA review of recent important studies in the genetics of learning disability.ResultsA host of new genetic connections to conditions associated with learning disability have been made.ConclusionsA basic understanding of these genetic connections is important for all learning disability psychiatrists if they are to follow the rapid changes – already beginning to influence our practice – that hold immense promise for the future.


1998 ◽  
Vol 180 (7) ◽  
pp. 1814-1821 ◽  
Author(s):  
Yong Yang ◽  
Ho-Ching Tiffany Tsui ◽  
Tsz-Kwong Man ◽  
Malcolm E. Winkler

ABSTRACT pdxK encodes a pyridoxine (PN)/pyridoxal (PL)/pyridoxamine (PM) kinase thought to function in the salvage pathway of pyridoxal 5′-phosphate (PLP) coenzyme biosynthesis. The observation that pdxK null mutants still contain PL kinase activity led to the hypothesis that Escherichia coli K-12 contains at least one other B6-vitamer kinase. Here we support this hypothesis by identifying the pdxY gene (formally, open reading frame f287b) at 36.92 min, which encodes a novel PL kinase. PdxY was first identified by its homology to PdxK in searches of the complete E. coli genome. Minimal clones of pdxY + overexpressed PL kinase specific activity about 10-fold. We inserted an omega cassette intopdxY and crossed the resultingpdxY::ΩKanr mutation into the bacterial chromosome of a pdxB mutant, in which de novo PLP biosynthesis is blocked. We then determined the growth characteristics and PL and PN kinase specific activities in extracts ofpdxK and pdxY single and double mutants. Significantly, the requirement of the pdxB pdxK pdxY triple mutant for PLP was not satisfied by PL and PN, and the triple mutant had negligible PL and PN kinase specific activities. Our combined results suggest that the PL kinase PdxY and the PN/PL/PM kinase PdxK are the only physiologically important B6vitamer kinases in E. coli and that their function is confined to the PLP salvage pathway. Last, we show thatpdxY is located downstream from pdxH (encoding PNP/PMP oxidase) and essential tyrS (encoding aminoacyl-tRNATyr synthetase) in a multifunctional operon.pdxY is completely cotranscribed with tyrS, but about 92% of tyrS transcripts terminate at a putative Rho-factor-dependent attenuator located in thetyrS-pdxY intercistronic region.


Sign in / Sign up

Export Citation Format

Share Document