plasmid gene
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 9)

H-INDEX

29
(FIVE YEARS 0)

2021 ◽  
Vol 298 ◽  
pp. 113541
Author(s):  
Rongxuan Wang ◽  
Norihisa Matsuura ◽  
Hiroe Hara-Yamamura ◽  
Toru Watanabe ◽  
Ryo Honda

mBio ◽  
2021 ◽  
Author(s):  
Lei Lei ◽  
Chunfu Yang ◽  
Michael John Patton ◽  
Margery Smelkinson ◽  
David Dorward ◽  
...  

The Chlamydia trachomatis plasmid regulates the expression and secretion of immune evasion virulence factors to the host cytosol by an unknown mechanism. In this study, we identified a novel plasmid gene protein 4 (Pgp4)-dependent secretion system.


Author(s):  
Fang-ling Du ◽  
Qi-sen Huang ◽  
Dan-dan Wei ◽  
Yan-fang Mei ◽  
Dan Long ◽  
...  

This study aimed to characterize carbapenem-resistant Klebsiella pneumoniae (CR-KP) co-harboring blaKPC-2-carrying plasmid and pLVPK-like virulence plasmid. Between December 2017 and April 2018, 24 CR-KP isolates were recovered from 24 patients with bacteremia. The mortality was 66.7%. Pulsed-field gel electrophoresis and multilocus sequence typing results indicated four clusters, of which cluster A (n = 21, 87.5%) belonged to ST11 and the three remaining isolates (ST412, ST65, ST23) had different pulsotypes (cluster B, C, D). The blaKPC-2-carrying plasmids all belonged to IncFIIK type, and the size ranged from 100 to 390 kb. Nineteen strains (79.2%) had a 219-kb virulence plasmid possessed high similarity to pLVPK from CG43 with serotype K2. Two strains had a 224-kb virulence plasmid resembled plasmid pK2044 from K. pneumoniae NTUH-K2044(ST23). Moreover, three strains carried three different hybrid resistance- and virulence-encoding plasmids. Conjugation assays showed that both blaKPC-2 and rmpA2 genes could be successfully transferred to E. coli J53 in 62.5% of the strains at frequencies of 4.5 × 10−6 to 2.4 × 10−4, of which three co-transferred blaKPC-2 along with rmpA2 in large plasmids. Infection assays in the Galleria mellonella model demonstrated the virulence level of these isolates was found to be consistently higher than that of classic Klebsiella pneumoniae. In conclusion, CR-KP co-harboring blaKPC-2-carrying plasmid and pLVPK-like virulence plasmid were characterized by multi-drug resistance, enhanced virulence, and transferability, and should, therefore, be regarded as a real superbug that could pose a serious threat to public health. Hence, heightened efforts are urgently needed to avoid its co-transmission of the virulent plasmid (gene) and resistant plasmid (gene) in clinical isolates.


2021 ◽  
Author(s):  
Eugen Pfeifer ◽  
Jorge A Moura de Sousa ◽  
Marie Touchon ◽  
Eduardo P C Rocha

Abstract Plasmids and temperate phages are key contributors to bacterial evolution. They are usually regarded as very distinct. However, some elements, termed phage–plasmids, are known to be both plasmids and phages, e.g. P1, N15 or SSU5. The number, distribution, relatedness and characteristics of these phage–plasmids are poorly known. Here, we screened for these elements among ca. 2500 phages and 12000 plasmids and identified 780 phage–plasmids across very diverse bacterial phyla. We grouped 92% of them by similarity of gene repertoires to eight defined groups and 18 other broader communities of elements. The existence of these large groups suggests that phage–plasmids are ancient. Their gene repertoires are large, the average element is larger than an average phage or plasmid, and they include slightly more homologs to phages than to plasmids. We analyzed the pangenomes and the genetic organization of each group of phage–plasmids and found the key phage genes to be conserved and co-localized within distinct groups, whereas genes with homologs in plasmids are much more variable and include most accessory genes. Phage–plasmids are a sizeable fraction of the sequenced plasmids (∼7%) and phages (∼5%), and could have key roles in bridging the genetic divide between phages and other mobile genetic elements.


2020 ◽  
Author(s):  
Eugen Pfeifer ◽  
Jorge A. Moura de Sousa ◽  
Marie Touchon ◽  
Eduardo P.C. Rocha

ABSTRACTPlasmids and temperate phages are mobile genetic elements driving bacterial evolution. They are usually regarded as very distinct. However, some elements, termed phage-plasmids, are known to be both plasmids and phages, e.g. P1, N15 or SSU5. The number, distribution, relatedness and characteristics of these phage-plasmids are poorly known. Here, we screened for these elements among ca. 14000 phages and plasmids and identified 780 phage-plasmids across very diverse bacterial phyla. We grouped 92% of them by similarity of gene repertoires to define 8 families and 18 other broader communities of elements. The existence of these large groups suggests that phage-plasmids are ancient. Their gene repertoires are large, the average element is larger than an average phage or plasmid, and they include slightly more homologs to phages than to plasmids. We analyzed the pangenomes and the genetic organization of each group of phage-plasmids and found the key phage genes to be conserved and co-localized within families, whereas genes with homologs in plasmids are much more variable and include most accessory genes. Phage-plasmids are a sizeable fraction of all phages and plasmids and could have key roles in bridging the genetic divide between phages and other mobile genetic elements.


2020 ◽  
Vol 65 (6) ◽  
pp. 963-972
Author(s):  
Lilia P. Petrova ◽  
Stella S. Yevstigneyeva ◽  
Yulia A. Filip’echeva ◽  
Andrei V. Shelud’ko ◽  
Gennady L. Burygin ◽  
...  

2020 ◽  
Vol 60 (7) ◽  
pp. 613-623
Author(s):  
Lilia P. Petrova ◽  
Stella S. Yevstigneyeva ◽  
Igor V. Borisov ◽  
Andrei V. Shelud'ko ◽  
Gennady L. Burygin ◽  
...  

2020 ◽  
Vol 42 (4) ◽  
pp. 625-632
Author(s):  
Sumarin Soonsanga ◽  
Plearnpis Luxananil ◽  
Boonhiang Promdonkoy

Sign in / Sign up

Export Citation Format

Share Document