scholarly journals Indirect role of adenylate cyclase and cyclic AMP in chemotaxis to phosphotransferase system carbohydrates in Escherichia coli K-12.

1987 ◽  
Vol 169 (2) ◽  
pp. 593-599 ◽  
Author(s):  
A P Vogler ◽  
J W Lengeler
2006 ◽  
Vol 188 (15) ◽  
pp. 5439-5449 ◽  
Author(s):  
Ann-Katrin Becker ◽  
Tim Zeppenfeld ◽  
Ariane Staab ◽  
Sabine Seitz ◽  
Winfried Boos ◽  
...  

ABSTRACT The membrane-bound protein EIICBGlc encoded by the ptsG gene is the major glucose transporter in Escherichia coli. This protein is part of the phosphoenolpyruvate:glucose-phosphotransferase system, a very important transport and signal transduction system in bacteria. The regulation of ptsG expression is very complex. Among others, two major regulators, the repressor Mlc and the cyclic AMP-cyclic AMP receptor protein activator complex, have been identified. Here we report identification of a novel protein, YeeI, that is involved in the regulation of ptsG by interacting with Mlc. Mutants with reduced activity of the glucose-phosphotransferase system were isolated by transposon mutagenesis. One class of mutations was located in the open reading frame yeeI at 44.1 min on the E. coli K-12 chromosome. The yeeI mutants exhibited increased generation times during growth on glucose, reduced transport of methyl-α-d-glucopyranoside, a substrate of EIICBGlc, reduced induction of a ptsG-lacZ operon fusion, and reduced catabolite repression in lactose/glucose diauxic growth experiments. These observations were the result of decreased ptsG expression and a decrease in the amount of EIICBGlc. In contrast, overexpression of yeeI resulted in higher expression of ptsG, of a ptsG-lacZ operon fusion, and of the autoregulated dgsA gene. The effect of a yeeI mutation could be suppressed by introducing a dgsA deletion, implying that the two proteins belong to the same signal transduction pathway and that Mlc is epistatic to YeeI. By measuring the surface plasmon resonance, we found that YeeI (proposed gene designation, mtfA) directly interacts with Mlc with high affinity.


1980 ◽  
Vol 26 (12) ◽  
pp. 1508-1511 ◽  
Author(s):  
Ann D. E. Fraser ◽  
Hiroshi Yamazaki

It has not been clarified whether the utilization of mannose by Escherichia coli requires adenosine 3′,5′-cyclic monophosphate (cyclic AMP). Using an adenylyl cyclase deficient mutant (CA8306B) and a cyclic AMP receptor protein (CRP) deficient mutant (5333B) we have shown that the utilization of mannose is dependent on the cyclic AMP–CRP complex. 2-Deoxyglucose (DG) is a nonmetabolizable glucose analog specific for the phosphotransferase system (PTS) which transports mannose (termed here PTSM). Growth of CA8306B on glycerol is unaffected by addition of the analog, whereas growth of the strain on glycerol plus cyclic AMP ceases im mediately upon addition of DG. These results suggest that the formation of PTSM is dependent on cyclic AMP. In addition, CA8306B grown on glycerol plus cyclic AMP can immediately utilize mannose when transferred to a medium containing mannose as a sole carbon source, whereas the same strain grown on glycerol without cyclic AMP cannot utilize mannose when so transferred. These results suggest that the formation of PTSM does not require an exogenous inducer.


1979 ◽  
Author(s):  
R.J. Haslam

Cyclic AMP mediates the inhibitions of platelet aggregation caused by PCI2, PGE1 and PGD2. Thus, these compounds activate platelet adenylate cyclase and Increase platelet cyclic AMP; their inhibitory effects are blockod by inhibitor? of adenylate cyclase, are potentiated by inhibitors of cyclic AKP phosphodiesterase and are mimicked hy N6 ,2'-0-dibutyryl cyclic AMP. Inhibition of adenylate cyclase does not potentiate platelet aggregation in the absence of inhibitory prostaglandins, indicating that platelet cyclic AMP is too low to affect aggregation under these conditions. To determine whether platelets in the circulation are exposed to agents that increase platelet cyclic AMP, washed rabbi platelets labelled with [3H] adenine were incubated with rabbit arterial blood under various conditions; any increases in cyclic [3H]AMP were measured. These experiments showed that freshly taken rabbit arterial blood does not normally contain any factors that can increase platelet cyclic AMP sufficiently to affect platelet function; specifically, circulating PGI2 was less than 0.1 pmol/ml of blood. It follows that increases in cyclic AMP in circulating rabbit platelets must occur only locally or under special conditions. The role of the moderate increases in platelet cyclic CMP caused by aggregating agents remains uncertain, but the inhibition of aggregation by compounds such as sodium nitroprusside that increase cyclic CMP up to 100-fold suggests that cyclic CMP may, like cyclic AMP, be an inhibitory mediator.


1999 ◽  
Vol 181 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Jacqueline Plumbridge ◽  
Eric Vimr

ABSTRACT N-Acetylglucosamine (GlcNAc) andN-acetylneuraminic acid (NANA) are good carbon sources forEscherichia coli K-12, whereasN-acetylmannosamine (ManNAc) is metabolized very slowly. The isolation of regulatory mutations which enhanced utilization of ManNAc allowed us to elucidate the pathway of its degradation. ManNAc is transported by the manXYZ-encoded phosphoenolpyruvate-dependent phosphotransferase system (PTS) transporter producing intracellular ManNAc-6-P. This phosphorylated hexosamine is subsequently converted to GlcNAc-6-P, which is further metabolized by the nagBA-encoded deacetylase and deaminase of the GlcNAc-6-P degradation pathway. Two independent mutations are necessary for good growth on ManNAc. One mutation maps tomlc, and mutations in this gene are known to enhance the expression of manXYZ. The second regulatory mutation was mapped to the nanAT operon, which encodes the NANA transporter and NANA lyase. The combined action of thenanAT gene products converts extracellular NANA to intracellular ManNAc. The second regulatory mutation defines an open reading frame (ORF), called yhcK, as the gene for the repressor of the nan operon (nanR). Mutations in the repressor enhance expression of the nanAT genes and, presumably, three distal, previously unidentified genes,yhcJIH. Expression of just one of these downstream ORFs,yhcJ, is necessary for growth on ManNAc in the presence of an mlc mutation. The yhcJ gene appears to encode a ManNAc-6-P-to-GlcNAc-6-P epimerase (nanE). Another putative gene in the nan operon, yhcI, likely encodes ManNAc kinase (nanK), which should phosphorylate the ManNAc liberated from NANA by the NanA protein. Use of NANA as carbon source by E. coli also requires thenagBA gene products. The existence of a ManNAc kinase and epimerase within the nan operon allows us to propose that the pathways for dissimilation of the three amino sugars GlcNAc, ManNAc, and NANA, all converge at the step of GlcNAc-6-P.


Sign in / Sign up

Export Citation Format

Share Document