scholarly journals Chimeric transcriptional activators generated in vivo from VnfA and AnfA of Azotobacter vinelandii: N-terminal domain of AnfA is responsible for dependence on nitrogenase Fe protein.

1994 ◽  
Vol 176 (21) ◽  
pp. 6545-6549 ◽  
Author(s):  
E Frise ◽  
A Green ◽  
M Drummond
2004 ◽  
Vol 279 (19) ◽  
pp. 19705-19711 ◽  
Author(s):  
Patricia C. Dos Santos ◽  
Archer D. Smith ◽  
Jeverson Frazzon ◽  
Valerie L. Cash ◽  
Michael K. Johnson ◽  
...  

The NifU protein is a homodimer that is proposed to provide a molecular scaffold for the assembly of [Fe-S] clusters uniquely destined for the maturation of the nitrogenase catalytic components. There are three domains contained within NifU, with the N-terminal domain exhibiting a high degree of primary sequence similarity to a related family of [Fe-S] cluster biosynthetic scaffolds designated IscU. The C-terminal domain of NifU exhibits sequence similarity to a second family of proposed [Fe-S] cluster biosynthetic scaffolds designated Nfu. Genetic experiments described here involving amino acid substitutions within the N-terminal and C-terminal domains of NifU indicate that both domains can separately participate in nitrogenase-specific [Fe-S] cluster formation, although the N-terminal domain appears to have the dominant function. Thesein vivoexperiments were supported byin vitro[Fe-S] cluster assembly and transfer experiments involving the activation of an apo-form of the nitrogenase Fe protein.


1984 ◽  
Vol 224 (3) ◽  
pp. 853-862 ◽  
Author(s):  
R R Eady ◽  
R L Robson

Steady-state chemostat cultures of Azotobacter vinelandii were established in a simple defined medium that had been chemically purified to minimize Mo and that contained no utilizable combined N source. Growth was dependent on N2 fixation, the limiting nutrient being the Mo contaminating the system. The Mo content of the organisms was at least 100-fold lower than that of Mo-sufficient cultures, and they lacked the characteristic g = 3.7 e.p.r. feature of the MoFe-protein of nitrogenase. A characteristic of nitrogenase activity in vivo in Mo-limited populations was a disproportionately low activity for acetylene reduction, which was 0.3 to 0.1 of that expected from the rate of N2 reduction. Acetylene was also a poor substrate in comparison with protons as a substrate for nitrogenase, and did not markedly inhibit H2 evolution, in contrast with Mo-sufficient populations. In batch cultures in similar medium or ‘spent’ chemostat medium inoculated with Mo-limited organisms, the addition of Mo elicited a biphasic increased growth response at concentrations as low as 2.5 nM, provided that sufficient Fe was supplied. In this system V did not substitute for Mo, and Mo-deficient cultures ceased growth at a 25-fold lower population density compared with cultures supplemented with Mo. Nitrogenase component proteins could not be unequivocally detected by visual inspection of fractionated crude extracts of Mo-limited organisms. 35SO42-pulse-labelling studies also showed that the rate of synthesis of the MoFe-protein component of nitrogenase was too low to be quantified. However, the Fe-protein of nitrogenase was apparently synthesized at high rates. The discussion includes an evaluation of the possibility that A. vinelandii possesses an Mo-independent N2-fixation system.


Author(s):  
J. T. Stasny ◽  
R. C. Burns ◽  
R. W. F. Hardy

Structure-functlon studies of biological N2-fixation have correlated the presence of the enzyme nitrogenase with increased numbers of intracytoplasmic membranes in Azotobacter. However no direct evidence has been provided for the internal cellular localization of any nitrogenase. Recent advances concerned with the crystallizatiorTand the electron microscopic characterization of the Mo-Fe protein component of Azotobacter nitrogenase, prompted the use of this purified protein to obtain antibodies (Ab) to be conjugated to electron dense markers for the intracellular localization of the protein by electron microscopy. The present study describes the use of ferritin conjugated to goat antitMo-Fe protein immunoglobulin (IgG) and the observations following its topical application to thin sections of N2-grown Azotobacter.


2020 ◽  
Vol 295 (13) ◽  
pp. 4252-4264 ◽  
Author(s):  
Chu Wang ◽  
Kaikai Zhang ◽  
Lina Meng ◽  
Xin Zhang ◽  
Yanan Song ◽  
...  

SAM and HD domain-containing protein 1 (SAMHD1) is a host factor that restricts reverse transcription of lentiviruses such as HIV in myeloid cells and resting T cells through its dNTP triphosphohydrolase (dNTPase) activity. Lentiviruses counteract this restriction by expressing the accessory protein Vpx or Vpr, which targets SAMHD1 for proteasomal degradation. SAMHD1 is conserved among mammals, and the feline and bovine SAMHD1 proteins (fSAM and bSAM) restrict lentiviruses by reducing cellular dNTP concentrations. However, the functional regions of fSAM and bSAM that are required for their biological functions are not well-characterized. Here, to establish alternative models to investigate SAMHD1 in vivo, we studied the restriction profile of fSAM and bSAM against different primate lentiviruses. We found that both fSAM and bSAM strongly restrict primate lentiviruses and that Vpx induces the proteasomal degradation of both fSAM and bSAM. Further investigation identified one and five amino acid sites in the C-terminal domain (CTD) of fSAM and bSAM, respectively, that are required for Vpx-mediated degradation. We also found that the CTD of bSAM is directly involved in mediating bSAM's antiviral activity by regulating dNTPase activity, whereas the CTD of fSAM is not. Our results suggest that the CTDs of fSAM and bSAM have important roles in their antiviral functions. These findings advance our understanding of the mechanism of fSAM- and bSAM-mediated viral restriction and might inform strategies for improving HIV animal models.


2021 ◽  
Vol 22 (11) ◽  
pp. 5871
Author(s):  
Almerinda Di Venere ◽  
Eleonora Nicolai ◽  
Velia Minicozzi ◽  
Anna Maria Caccuri ◽  
Luisa Di Paola ◽  
...  

TNF Receptor Associated Factor 2 (TRAF2) is a trimeric protein that belongs to the TNF receptor associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding and for its interaction with other proteins involved in the TNFR signaling. The monomer-trimer equilibrium of a C- terminal domain truncated form of TRAF2 (TRAF2-C), plays also a relevant role in binding the membrane, causing inward vesiculation. In this study, we have investigated the conformational dynamics of TRAF2-C through circular dichroism, fluorescence, and dynamic light scattering, performing temperature-dependent measurements. The data indicate that the protein retains its oligomeric state and most of its secondary structure, while displaying a significative increase in the heterogeneity of the tyrosines signal, increasing the temperature from ≈15 to ≈35 °C. The peculiar crowding of tyrosine residues (12 out of 18) at the three subunit interfaces and the strong dependence on the trimer concentration indicate that such conformational changes mainly involve the contact areas between each pair of monomers, affecting the oligomeric state. Molecular dynamic simulations in this temperature range suggest that the interfaces heterogeneity is an intrinsic property of the trimer that arises from the continuous, asymmetric approaching and distancing of its subunits. Such dynamics affect the results of molecular docking on the external protein surface using receptor peptides, indicating that the TRAF2-receptor interaction in the solution might not involve three subunits at the same time, as suggested by the static analysis obtainable from the crystal structure. These findings shed new light on the role that the TRAF2 oligomeric state might have in regulating the protein binding activity in vivo.


2021 ◽  
Vol 22 (13) ◽  
pp. 6760
Author(s):  
Noémie Cresto ◽  
Camille Gardier ◽  
Marie-Claude Gaillard ◽  
Francesco Gubinelli ◽  
Pauline Roost ◽  
...  

Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson’s disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) “cell-autonomous”. Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its “dead” kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.


1985 ◽  
Vol 260 (20) ◽  
pp. 11160-11173 ◽  
Author(s):  
P A Lindahl ◽  
E P Day ◽  
T A Kent ◽  
W H Orme-Johnson ◽  
E Münck

2005 ◽  
Vol 16 (4) ◽  
pp. 2049-2057 ◽  
Author(s):  
Qi Zhong ◽  
Martin J. Watson ◽  
Cheri S. Lazar ◽  
Andrea M. Hounslow ◽  
Jonathan P. Waltho ◽  
...  

The sorting nexin (SNX) family of proteins is characterized by sequence-related phox homology (PX) domains. A minority of PX domains bind with high affinity to phosphatidylinositol 3-phosphate [PI(3)P], whereas the majority of PX domains exhibit low affinity that is insufficient to target them to vesicles. SNX1 is located on endosomes, but its low affinity PX domain fails to localize in vivo. The NMR structure of the PX domain of SNX1 reveals an overall fold that is similar to high-affinity PX domains. However, the phosphatidylinositol (PI) binding pocket of the SNX1 PX domain is incomplete; regions of the pocket that are well defined in high-affinity PX domains are highly mobile in SNX1. Some of this mobility is lost upon binding PI(3)P. The C-terminal domain of SNX1 is a long helical dimer that localizes to vesicles but not to the early endosome antigen-1–containing vesicles where endogenous SNX1 resides. Thus, the obligate dimerization of SNX1 that is driven by the C-terminal domain creates a high-affinity PI binding species that properly targets the holo protein to endosomes.


Sign in / Sign up

Export Citation Format

Share Document