px domain
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 19)

H-INDEX

35
(FIVE YEARS 1)

mBio ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yi Lou ◽  
Jing Zhang ◽  
Guanghui Wang ◽  
Wenqin Fang ◽  
Shumin Wang ◽  
...  

Fusarium head blight (FHB), caused predominantly by Fusarium graminearum , is an economically devastating disease of a wide range of cereal crops. Our previous study identified F. graminearum Vps17, Vps5, Snx41, and Snx4 as PX domain-containing proteins that were involved in membrane trafficking mediating the fungal development and pathogenicity, but the identity and biological roles of the remaining members of this protein family remain unknown in this model phytopathogen.


2021 ◽  
Author(s):  
Yulia Solomonov ◽  
Nurit Hadad ◽  
Rachel Levy

Abstract Background: Previous studies have demonstrated that Cytosolic phospholipase A2a (cPLA2a) is absolutely required for NOX2 NADPH oxidase activation in human and mouse phagocytes. Moreover, upon stimulation, cPLA2a translocates to the plasma membranes of by binding to the assembled oxidase, forming a complex between its C2 domain and the PX domain of the oxidase cytosolic factor, p47phox in human phagocytes. Intravenous administration of an antisense against cPLA2a that significantly inhibited its expression in mouse peritoneal neutrophil and macrophages also inhibited superoxide production, in contrast to cPLA2a knockout mice that showed normal superoxide production. The aim of the present study was to determine whether there is a binding between cPLA2a-C2 domain and p47phox-PX in mouse macrophages, to further support the role of cPLA2a in oxidase regulation also in mouse phagocytes. Methods and Results: A significant binding of mouse GST-p47phox-PX domain fusion protein and cPLA2a in stimulated mouse phagocyte membranes was demonstrated by pull down experiments, although lower than that detected by human p47phox-PX domain. Substituting the amino acids Phe98, Asn99 and Gly100 to Cys98 Ser99 and Thr100 in mouse p47phox-PX domain (that are present in human p47phox-PX domain) caused strong binding that was similar to that detected by the human p47phox-PX domain. Conclusions: the binding between cPLA2a-C2 and p47phox-PX domains exist in mouse macrophages and is not unique to human phagocytes. The binding between the two proteins is lower in the mice probably due to the absence of amino acids Cys98 Ser99 and Thr100 in p47phox-PX domain that facilitate the binding to cPLA2a.


2021 ◽  
Vol 22 (15) ◽  
pp. 8103
Author(s):  
Balázs Merő ◽  
Kitti Koprivanacz ◽  
Anna Cserkaszky ◽  
László Radnai ◽  
Virag Vas ◽  
...  

The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called “tandem SH3”) and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amra Saric ◽  
Spencer A. Freeman ◽  
Chad D. Williamson ◽  
Michal Jarnik ◽  
Carlos M. Guardia ◽  
...  

AbstractThe ability of endolysosomal organelles to move within the cytoplasm is essential for the performance of their functions. Long-range movement involves coupling of the endolysosomes to motor proteins that carry them along microtubule tracks. This movement is influenced by interactions with other organelles, but the mechanisms involved are incompletely understood. Herein we show that the sorting nexin SNX19 tethers endolysosomes to the endoplasmic reticulum (ER), decreasing their motility and contributing to their concentration in the perinuclear area of the cell. Tethering depends on two N-terminal transmembrane domains that anchor SNX19 to the ER, and a PX domain that binds to phosphatidylinositol 3-phosphate on the endolysosomal membrane. Two other domains named PXA and PXC negatively regulate the interaction of SNX19 with endolysosomes. These studies thus identify a mechanism for controlling the motility and positioning of endolysosomes that involves tethering to the ER by a sorting nexin.


2021 ◽  
Author(s):  
Jessica J. A. Hummel ◽  
Casper C. Hoogenraad

Molecular motors drive long-range intracellular transport of various vesicles and other cargos within a cell. Identifying which kinesin motors interact with which type of transport vesicles has been challenging, especially in complex neuronal cells. Here, we present a highly adaptable toolbox of engineered kinesin motors to control and interrogate the selectivity and regulation of cargo transport with acute chemical induction. Selectivity of cargo-motor interaction can be addressed by systematic screening of a library of kinesin tails and neuronal cargos. Additionally, our toolbox can be used to study kinesin-cargo regulatory mechanisms, and we found that cargo trafficking by KIF16B is regulated by its PX-domain. Furthermore, our toolbox enables acute manipulation of polarized trafficking in living neurons by stirring transport into axons or dendrites. Engineering kinesin motors provides a powerful tool to map the specificity of interactions between kinesin and cargos, manipulate polarized transport and investigate cargo-motor interaction modes.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009607
Author(s):  
Yangli Tian ◽  
Qiaoju Kang ◽  
Xuemeng Shi ◽  
Yuan Wang ◽  
Nali Zhang ◽  
...  

Early endosomes are the sorting hub on the endocytic pathway, wherein sorting nexins (SNXs) play important roles for formation of the distinct membranous microdomains with different sorting functions. Tubular endosomes mediate the recycling of clathrin-independent endocytic (CIE) cargoes back toward the plasma membrane. However, the molecular mechanism underlying the tubule formation is still poorly understood. Here we screened the effect on the ARF-6-associated CIE recycling endosomal tubules for all the SNX members in Caenorhabditis elegans (C. elegans). We identified SNX-3 as an essential factor for generation of the recycling tubules. The loss of SNX-3 abolishes the interconnected tubules in the intestine of C. elegans. Consequently, the surface and total protein levels of the recycling CIE protein hTAC are strongly decreased. Unexpectedly, depletion of the retromer components VPS-26/-29/-35 has no similar effect, implying that the retromer trimer is dispensable in this process. We determined that hTAC is captured by the ESCRT complex and transported into the lysosome for rapid degradation in snx-3 mutants. Interestingly, EEA-1 is increasingly recruited on early endosomes and localized to the hTAC-containing structures in snx-3 mutant intestines. We also showed that SNX3 and EEA1 compete with each other for binding to phosphatidylinositol-3-phosphate enriching early endosomes in Hela cells. Our data demonstrate for the first time that PX domain-only C. elegans SNX-3 organizes the tubular endosomes for efficient recycling and retrieves the CIE cargo away from the maturing sorting endosomes by competing with EEA-1 for binding to the early endosomes. However, our results call into question how SNX-3 couples the cargo capture and membrane remodeling in the absence of the retromer trimer complex.


2021 ◽  
Author(s):  
Krishna Chintaluri

Phosphoinositides (PtdInsPs) lipids recruit effector proteins to membranes to mediate a variety of functions including signal transduction and membrane trafficking. Each PtdInsP binds to a specific set of effectors through characteristic protein domains such as the PH, FYVE and PX domains. Domains with high affinity for a single PtdInsP species are useful as probes to visualize the distribution and dynamics of that PtdInsP. The endolysosomal system is governed by two primary PtdInsPs: phosphatidylinositol-3-phosphate [PtdIns(3)P] and phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2], which are thought to localize and control early endosomes and lysosomes, respectively. While PtdIns(3)P has been analysed with mammalian-derived PX and FYVE domains, PtdIns(3,5)P2 indicators remain controversial. Thus, complementary probes against these PtdInsPs are needed, including those originating from non-mammalian proteins. Here, we characterized in mammalian cells the dynamics of the PH domain from PH-containing protein-1 from the parasite Toxoplasma gondii (TgPH1), which was previously shown to bind PtdIns(3,5)P2 in vitro. However, we show that TgPH1 retains membrane-binding in PIKfyve-inhibited cells, suggesting that TgPH1 is not a viable PtdIns(3,5)P2 marker in mammalian cells. Instead, PtdIns(3)P depletion using pharmacological treatments dissociated TgPH1 from membranes. Indeed, TgPH1 co-localized to EEA1-positive endosomes. In addition, TgPH1 co-localized and behaved similarly to the PX domain of p40phox and tandem FYVE domain of EEA1, which are commonly used as PtdIns(3)P indicators. Collectively, TgPH1 offers a complementary reporter for PtdIns(3)P derived from a non-mammalian protein and that is distinct from commonly employed PX and FYVE domain-based probes.


2021 ◽  
Author(s):  
Krishna Chintaluri

Phosphoinositides (PtdInsPs) lipids recruit effector proteins to membranes to mediate a variety of functions including signal transduction and membrane trafficking. Each PtdInsP binds to a specific set of effectors through characteristic protein domains such as the PH, FYVE and PX domains. Domains with high affinity for a single PtdInsP species are useful as probes to visualize the distribution and dynamics of that PtdInsP. The endolysosomal system is governed by two primary PtdInsPs: phosphatidylinositol-3-phosphate [PtdIns(3)P] and phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2], which are thought to localize and control early endosomes and lysosomes, respectively. While PtdIns(3)P has been analysed with mammalian-derived PX and FYVE domains, PtdIns(3,5)P2 indicators remain controversial. Thus, complementary probes against these PtdInsPs are needed, including those originating from non-mammalian proteins. Here, we characterized in mammalian cells the dynamics of the PH domain from PH-containing protein-1 from the parasite Toxoplasma gondii (TgPH1), which was previously shown to bind PtdIns(3,5)P2 in vitro. However, we show that TgPH1 retains membrane-binding in PIKfyve-inhibited cells, suggesting that TgPH1 is not a viable PtdIns(3,5)P2 marker in mammalian cells. Instead, PtdIns(3)P depletion using pharmacological treatments dissociated TgPH1 from membranes. Indeed, TgPH1 co-localized to EEA1-positive endosomes. In addition, TgPH1 co-localized and behaved similarly to the PX domain of p40phox and tandem FYVE domain of EEA1, which are commonly used as PtdIns(3)P indicators. Collectively, TgPH1 offers a complementary reporter for PtdIns(3)P derived from a non-mammalian protein and that is distinct from commonly employed PX and FYVE domain-based probes.


2021 ◽  
Author(s):  
Daniel Pokorny ◽  
Linda Truebestein ◽  
Kaelin D Fleming ◽  
John E Burke ◽  
Thomas A Leonard

Serum- and glucocorticoid-regulated kinase 3 (Sgk3) is activated by the phospholipid phosphatidylinositol-3-phosphate (PI3P) downstream of growth factor signaling and by Vps34-mediated PI3P production on endosomes. Upregulation of Sgk3 activity has recently been linked to a number of human cancers. Here, we show that Sgk3 is regulated by a combination of phosphorylation and allosteric activation by PI3P. We demonstrate that PI3P binding induces large conformational changes in Sgk3 associated with its activation, and that the PI3P binding pocket of the PX domain of Sgk3 is sequestered in its inactive conformation. Finally, we reconstituted Sgk3 activation via Vps34-mediated PI3P synthesis on phosphatidylinositol liposomes in vitro. In addition to defining the mechanism of Sgk3 activation by PI3P, our findings open up potential therapeutic avenues in allosteric inhibitor development to target Sgk3 in cancer.


2021 ◽  
Author(s):  
Annie Lauzier ◽  
Marie-France Bossanyi ◽  
Rupali Ugrankar ◽  
Mike Henne ◽  
Steve Jean

Autophagy, the degradation and recycling of cytosolic components in the lysosome, is an essential cellular mechanism. It is a membrane-mediated process that is linked to vesicular trafficking events. The sorting nexin (SNX) protein family controls the sorting of a large array of cargoes, and various SNXs can impact autophagy. To gain a better understanding of their functions in vivo under nutrient starvation, we screened all Drosophila SNXs by RNAi in the fat body. Significantly, depletion of snazarus (snz) strongly impacted autolysosome formation and led to decreased autophagic flux. Interestingly, we observed altered distribution of Vamp7-positive vesicles with snz depletion and snz roles were conserved in human cells. SNX25 is the closest ortholog to snz, and we demonstrate a role for it in VAMP8 trafficking. We found that this activity was dependent on the SNX25 PX domain, and independent of SNX25 anchoring at the ER. We also demonstrate that differentially spliced forms of SNX14 and SNX25 are present in cancer cells. This work identifies a conserved role for snz/SNX25 as regulators of autophagic flux, and show differential isoform expression between orthologs.


Sign in / Sign up

Export Citation Format

Share Document