scholarly journals Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene.

1997 ◽  
Vol 179 (20) ◽  
pp. 6383-6390 ◽  
Author(s):  
J Nguyen ◽  
F Francou ◽  
M J Virolle ◽  
M Guérineau
1999 ◽  
Vol 181 (14) ◽  
pp. 4353-4364 ◽  
Author(s):  
Oscar H. Martínez-Costa ◽  
Angel J. Martín-Triana ◽  
Eduardo Martínez ◽  
Miguel A. Fernández-Moreno ◽  
Francisco Malpartida

The sequence of a 4.8-kbp DNA fragment adjacent to the right-hand end of the actinorhodin biosynthetic (act) cluster downstream of actVB-orf6 from Streptomyces coelicolor A3(2) reveals six complete open reading frames, namedorf7 to orf12. The deduced amino acid sequences from orf7, orf10, and orf11 show significant similarities with the following products in the databases: a putative protein from the S. coelicolor SCP3 plasmid, LysR-type transcriptional regulators, and proteins belonging to the family of short-chain dehydrogenases/reductases, respectively. The deduced product of orf8 reveals low similarities with several methyltransferases from different sources, whileorf9 and orf12 products show no similarities with other known proteins. Disruptions of orf10 andorf11 genes in S. coelicolor appear to have no significant effect on the production of actinorhodin. Nevertheless, disruption or deletion of orf10 in Streptomyces lividans causes actinorhodin overproduction. The introduction of extra copies of orf10 and orf11 genes in anS. coelicolor actIII mutant restores the ability to produce actinorhodin. Transcriptional analysis and DNA footprinting indicate that Orf10 represses its own transcription and regulatesorf11 transcription, expression of which might require the presence of an unknown inducer. No DNA target for Orf10 protein was found within the act cluster.


Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Lucas Sánchez ◽  
Pedro Santamaria

Abstract This article reports the breaking of ethological barriers through the constitution of soma-germ line chimeras between species of the melanogaster subgroup of Drosophila, which are ethologically isolated. Female Drosophila yakuba and D. teissieri germ cells in a D. melanogaster ovary produced functional oocytes that, when fertilized by D. melanogaster sperm, gave rise to sterile yakuba-melanogaster andteissieri-melanogaster male and female hybrids. However, the erecta-melanogaster and orena-melanogaster hybrids were lethal, since female D. erecta and D. orena germ cells in a D. melanogaster ovary failed to form oocytes with the capacity to develop normally. This failure appears to be caused by an altered interaction between the melanogaster soma and the erecta and orena germ lines. Germ cells of D. teissieri and D. orena in a D. melanogaster testis produced motile sperm that was not stored in D. melanogaster females. This might be due to incompatibility between the teissieri and orena sperm and the melanogaster seminal fluid. A morphological analysis of the terminalia of yakuba-melanogaster and teissieri-melanogaster hybrids was performed. The effect on the terminalia of teissieri-melanogaster hybrids of a mutation in doublesex, a regulatory gene that controls the development of the terminalia, was also investigated.


Sign in / Sign up

Export Citation Format

Share Document