scholarly journals Phosphorylation of the Periplasmic Binding Protein in Two Transport Systems for Arginine Incorporation in Escherichia coli K-12 Is Unrelated to the Function of the Transport System

1998 ◽  
Vol 180 (18) ◽  
pp. 4828-4833 ◽  
Author(s):  
Roberto T. F. Celis ◽  
Peter F. Leadlay ◽  
Ipsita Roy ◽  
Anne Hansen

ABSTRACT In Escherichia coli K-12, the accumulation of arginine is mediated by two distinct periplasmic binding protein-dependent transport systems, one common to arginine and ornithine (AO system) and one for lysine, arginine, and ornithine (LAO system). Each of these systems includes a specific periplasmic binding protein, the AO-binding protein for the AO system and the LAO-binding protein for the LAO system. The two systems include a common inner membrane transport protein which is able to hydrolyze ATP and also phosphorylate the two periplasmic binding proteins. Previously, a mutant resistant to the toxic effects of canavanine, with low levels of transport activities and reduced levels of phosphorylation of the two periplasmic binding proteins, was isolated and characterized (R. T. F. Celis, J. Biol. Chem. 265:1787–1793, 1990). The gene encoding the transport ATPase enzyme (argK) has been cloned and sequenced. The gene possesses an open reading frame with the capacity to encode 268 amino acids (mass of 29.370 Da). The amino acid sequence of the protein includes two short sequence motifs which constitute a well-defined nucleotide-binding fold (Walker sequences A and B) present in the ATP-binding subunits of many transporters. We report here the isolation of canavanine-sensitive derivatives of the previously characterized mutant. We describe the properties of these suppressor mutations in which the transport of arginine, ornithine, and lysine has been restored. In these mutants, the phosphorylation of the AO- and LAO-binding proteins remains at a low level. This information indicates that whereas hydrolysis of ATP by the transport ATPase is an obligatory requirement for the accumulation of these amino acids in E. coli K-12, the phosphorylation of the periplasmic binding protein is not related to the function of the transport system.

Author(s):  
Diogo Tavares ◽  
Jan R. van der Meer

Periplasmic-binding proteins have been previously proclaimed as a general scaffold to design sensor proteins with new recognition specificities for non-natural compounds. Such proteins can be integrated in bacterial bioreporter chassis with hybrid chemoreceptors to produce a concentration-dependent signal after ligand binding to the sensor cell. However, computationally designed new ligand-binding properties ignore the more general properties of periplasmic binding proteins, such as their periplasmic translocation, dynamic transition of open and closed forms, and interactions with membrane receptors. In order to better understand the roles of such general properties in periplasmic signaling behaviour, we study here the subcellular localization of ribose-binding protein (RbsB) in Escherichia coli in comparison to a recently evolved set of mutants designed to bind 1,3-cyclohexanediol. As proxies for localization we calibrate and deploy C-terminal end mCherry fluorescent protein fusions. Whereas RbsB-mCherry coherently localized to the periplasmic space and accumulated in (periplasmic) polar regions depending on chemoreceptor availability, mutant RbsB-mCherry expression resulted in high fluorescence cell-to-cell variability. This resulted in higher proportions of cells devoid of clear polar foci and of cells with multiple fluorescent foci elsewhere, suggesting poorer translocation, periplasmic autoaggregation and mislocalization. Analysis of RbsB mutants and mutant libraries at different stages of directed evolution suggested overall improvement to more RbsB-wild-type-like characteristics, which was corroborated by structure predictions. Our results show that defects in periplasmic localization of mutant RbsB proteins partly explains their poor sensing performance. Future efforts should be directed to predicting or selecting secondary mutations outside computationally designed binding pockets that take folding, translocation and receptor-interactions into account. Importance Biosensor engineering relies on transcription factors or signaling proteins to provide the actual sensory functions for the target chemicals. Since for many compounds there are no natural sensory proteins, there is a general interest in methods that could unlock routes to obtaining new ligand-binding properties. Bacterial periplasmic-binding proteins (PBPs) form an interesting family of proteins to explore to this purpose, because there is a large natural variety suggesting evolutionary trajectories to bind new ligands. PBPs are conserved and amenable to accurate computational binding pocket predictions. However, studying ribose-binding protein in Escherichia coli we discovered that designed variants have defects in their proper localization in the cell, which can impair appropriate sensor signaling. This indicates that functional sensing capacity of PBPs cannot be obtained solely through computational design of the ligand-binding pocket, but must take other properties of the protein into account, which are currently very difficult to predict.


Periplasmic binding protein-dependent transport systems are multicomponent, consisting of several inner membrane-associated proteins and a periplasmic component. The membrane-associated components of different systems are related in organization and function suggesting that, despite different substrate specificities, each transport system functions by a common mechanism. Current understanding of these components is reviewed. The nature of energy coupling to periplasmic transport systems has long been debated. Recent data now demonstrate that ATP hydrolysis is the primary source of energy for transport. The ATP-binding transport components are the best characterized of a family of closely related ATP-binding proteins believed to couple ATP hydrolysis to a variety of different biological processes. Intriguingly, systems closely related to periplasmic binding protein-dependent transport systems have recently been identified in several Gram-positive organisms (which lack a periplasm) and in eukaryotic cells. This class of transport system appears to be widespread in nature, serving a variety of important and diverse functions.


1999 ◽  
Vol 19 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Elena Cherepenko ◽  
Oksana Karpenko

The uptake of the aminoacid biosynthesis inhibitor, used as the broad-spectrum herbicide ingredient, glyphosate (N-[phosphonomethyl]-glycine) was investigated in E. coli as a model to study mechanisms of cell resistance to antimetabolites as drugs and pesticides. Unlike the glyphosate-degrading Arthrobacter sp. strain for which the first successful measurement of glyphosate uptake and its inhibition by orthophosphate was reported [15], E. coli K-12 cannot take up this inhibitor either in the presence of orthophosphate, or after a prolonged starvation for it. However, cells made “competent” after an overnight cold CaCl2 exposure followed by dimethyl sulfoxide (DMSO) treatment could take up this compound (Km for glyphosate uptake, 274 μM). Neither amino acids, belonging to a single transport system, nor orthophosphate gave essential inhibition of glyphosate uptake by these cells.


Sign in / Sign up

Export Citation Format

Share Document