scholarly journals Genetic Analysis of Pathway Specificity during Posttranslational Protein Translocation across the Escherichia coli Plasma Membrane

2003 ◽  
Vol 185 (9) ◽  
pp. 2811-2819 ◽  
Author(s):  
Natascha Blaudeck ◽  
Peter Kreutzenbeck ◽  
Roland Freudl ◽  
Georg A. Sprenger

ABSTRACT In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the “Sec avoidance signal,” the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.

2021 ◽  
Author(s):  
Umesh K Bageshwar ◽  
Antara DattaGupta ◽  
Siegfried M Musser

The twin-arginine translocation (Tat) pathway transports folded proteins across energetic membranes. Numerous Tat substrates contain co-factors that are inserted before transport with the assistance of redox enzyme maturation proteins (REMPs), which bind to the signal peptide of precursor proteins. How signal peptides are transferred from a REMP to a binding site on the Tat receptor complex remains unknown. Since the signal peptide mediates both interactions, possibilities include: i) a coordinated hand-off mechanism; or ii) a diffusional search after REMP dissociation. We investigated the binding interaction between substrates containing the TorA signal peptide (spTorA) and its cognate REMP, TorD, and the effect of TorD on the in vitrotransport of such substrates. We found that Escherichia coli TorD is predominantly a monomer at low micromolar concentrations (dimerization KD > 50 M), and this monomer binds reversibly to spTorA (KD 1 M). While TorD binds to membranes (KD 100 nM), it has no apparent affinity for Tat translocons and it inhibits binding of a precursor substrate to the membrane. TorD has a minimal effect on substrate transport by the Tat system, being mildly inhibitory at high concentrations. These data are consistent with a model in which the REMP-bound signal peptide is shielded from recognition by the Tat translocon, and spontaneous dissociation of the REMP allows the substrate to engage the Tat machinery. Thus, the REMP does not assist with targeting to the Tat translocon, but rather temporarily shields the signal peptide.


2001 ◽  
Vol 183 (2) ◽  
pp. 604-610 ◽  
Author(s):  
Natascha Blaudeck ◽  
Georg A. Sprenger ◽  
Roland Freudl ◽  
Thomas Wiegert

ABSTRACT The bacterial twin arginine translocation (Tat) pathway translocates across the cytoplasmic membrane folded proteins which, in most cases, contain a tightly bound cofactor. Specific amino-terminal signal peptides that exhibit a conserved amino acid consensus motif, S/T-R-R-X-F-L-K, direct these proteins to the Tat translocon. The glucose-fructose oxidoreductase (GFOR) ofZymomonas mobilis is a periplasmic enzyme with tightly bound NADP as a cofactor. It is synthesized as a cytoplasmic precursor with an amino-terminal signal peptide that shows all of the characteristics of a typical twin arginine signal peptide. However, GFOR is not exported to the periplasm when expressed in the heterologous host Escherichia coli, and enzymatically active pre-GFOR is found in the cytoplasm. A precise replacement of the pre-GFOR signal peptide by an authentic E. coli Tat signal peptide, which is derived from pre-trimethylamine N-oxide (TMAO) reductase (TorA), allowed export of GFOR, together with its bound cofactor, to the E. coli periplasm. This export was inhibited by carbonyl cyanide m-chlorophenylhydrazone, but not by sodium azide, and was blocked in E. coli tatC andtatAE mutant strains, showing that membrane translocation of the TorA-GFOR fusion protein occurred via the Tat pathway and not via the Sec pathway. Furthermore, tight cofactor binding (and therefore correct folding) was found to be a prerequisite for proper translocation of the fusion protein. These results strongly suggest that Tat signal peptides are not universally recognized by different Tat translocases, implying that the signal peptides of Tat-dependent precursor proteins are optimally adapted only to their cognate export apparatus. Such a situation is in marked contrast to the situation that is known to exist for Sec-dependent protein translocation.


2008 ◽  
Vol 75 (3) ◽  
pp. 603-607 ◽  
Author(s):  
Yoshimi Kikuchi ◽  
Hiroshi Itaya ◽  
Masayo Date ◽  
Kazuhiko Matsui ◽  
Long-Fei Wu

ABSTRACT The twin-arginine translocation (Tat) pathway in Corynebacterium glutamicum has been described previously. The minimal functional Tat system in C. glutamicum required TatA and TatC but did not require TatB, although this component was required for maximal efficiency of Tat-dependent secretion. We previously demonstrated that Chryseobacterium proteolyticum pro-protein glutaminase (pro-PG) and Streptomyces mobaraensis pro-transglutaminase (pro-TG) could be secreted via the Tat pathway in C. glutamicum. Here we report that the amounts of pro-PG secreted were more than threefold larger when TatC or TatAC was overexpressed, and there was a further threefold increase when TatABC was overexpressed. These results show that the amount of TatC protein is the first bottleneck and the amount of TatB protein is the second bottleneck in Tat-dependent protein secretion in C. glutamicum. In addition, the amount of pro-TG that accumulated via the Tat pathway when TatABC was overexpressed with the TorA signal peptide in C. glutamicum was larger than the amount that accumulated via the Sec pathway. We concluded that TatABC overexpression improves Tat-dependent pro-PG and pro-TG secretion in C. glutamicum.


2021 ◽  
Author(s):  
May N. Taw ◽  
Mingji Li ◽  
Daniel Kim ◽  
Mark A. Rocco ◽  
Dujduan Waraho-Zhmayev ◽  
...  

AbstractEscherichia coli remains one of the preferred hosts for biotechnological protein production due to its robust growth in culture and ease of genetic manipulation. It is often desirable to export recombinant proteins into the periplasmic space for reasons related to proper disulfide bond formation, prevention of aggregation and proteolytic degradation, and ease of purification. One such system for expressing heterologous secreted proteins is the twin-arginine translocation (Tat) pathway, which has the unique advantage of delivering correctly folded proteins into the periplasm. However, transit times for proteins through the Tat translocase, comprised of the TatABC proteins, are much longer than for passage through the SecYEG pore, the translocase associated with the more widely utilized Sec pathway. To date, a high protein flux through the Tat pathway has yet to be demonstrated. To address this shortcoming, we employed a directed co-evolution strategy to isolate mutant Tat translocases for their ability to deliver higher quantities of heterologous proteins into the periplasm. Three super-secreting translocases were selected that each exported a panel of recombinant proteins at levels that were significantly greater than that observed for wildtype TatABC or SecYEG translocases. Interestingly, all three of the evolved Tat translocases exhibited quality control suppression, suggesting that increased translocation flux was gained by relaxation of substrate proofreading. Overall, our discovery of highly efficient translocase variants paves the way for the use of the Tat system as a powerful complement to the Sec pathway for secreted production of both commodity and high value-added proteins.


2008 ◽  
Vol 74 (24) ◽  
pp. 7507-7513 ◽  
Author(s):  
Marc A. B. Kolkman ◽  
René van der Ploeg ◽  
Michael Bertels ◽  
Maurits van Dijk ◽  
Joop van der Laan ◽  
...  

ABSTRACT Proteins that are produced for commercial purposes in Bacillus subtilis are commonly secreted via the Sec pathway. Despite its high secretion capacity, the secretion of heterologous proteins via the Sec pathway is often unsuccessful. Alternative secretion routes, like the Tat pathway, are therefore of interest. Two parallel Tat pathways with distinct specificities have previously been discovered in B. subtilis. To explore the application potential of these Tat pathways, several commercially relevant or heterologous model proteins were fused to the signal peptides of the known B. subtilis Tat substrates YwbN and PhoD. Remarkably, the YwbN signal peptide directed secretion of active subtilisin, a typical Sec substrate, via the B. subtilis TatAyCy route. In contrast, the same signal peptide directed Tat-independent secretion of the Bacillus licheniformis α-amylase (AmyL). Moreover, the YwbN signal peptide directed secretion of SufI, an Escherichia coli Tat substrate, in a Tat-independent manner, most likely via Sec. Our results suggest that cytoplasmic protein folding prior to translocation is probably a major determinant of Tat-dependent protein secretion in B. subtilis, as is the case with E. coli. We conclude that future applications for the Tat system of B. subtilis will most likely involve commercially interesting proteins that are Sec incompatible.


2008 ◽  
Vol 191 (1) ◽  
pp. 196-202 ◽  
Author(s):  
Robyn T. Eijlander ◽  
Jan D. H. Jongbloed ◽  
Oscar P. Kuipers

ABSTRACT Protein translocation via the twin arginine translocation (TAT) pathway is characterized by the translocation of prefolded proteins across the hydrophobic lipid bilayer of the membrane. In Bacillus subtilis, two different Tat translocases are involved in this process, and both display different substrate specificities: PhoD is secreted via TatAdCd, whereas YwbN is secreted via TatAyCy. It was previously assumed that both TatAy and TatCy are essential for the translocation of the YwbN precursor. Through complementation studies, we now show that TatAy can be functionally replaced by TatAd when the latter is offered to the cells in excess amounts. Moreover, under conditions of overproduction, TatAdCd, in contrast to TatAyCy, shows an increased tolerance toward the acceptance of various Tat-dependent proteins.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256715
Author(s):  
Umesh K. Bageshwar ◽  
Antara DattaGupta ◽  
Siegfried M. Musser

The twin-arginine translocation (Tat) pathway transports folded proteins across energetic membranes. Numerous Tat substrates contain co-factors that are inserted before transport with the assistance of redox enzyme maturation proteins (REMPs), which bind to the signal peptide of precursor proteins. How signal peptides are transferred from a REMP to a binding site on the Tat receptor complex remains unknown. Since the signal peptide mediates both interactions, possibilities include: i) a coordinated hand-off mechanism; or ii) a diffusional search after REMP dissociation. We investigated the binding interaction between substrates containing the TorA signal peptide (spTorA) and its cognate REMP, TorD, and the effect of TorD on the in vitro transport of such substrates. We found that Escherichia coli TorD is predominantly a monomer at low micromolar concentrations (dimerization KD > 50 μM), and this monomer binds reversibly to spTorA (KD ≈ 1 μM). While TorD binds to membranes (KD ≈ 100 nM), it has no apparent affinity for Tat translocons and it inhibits binding of a precursor substrate to the membrane. TorD has a minimal effect on substrate transport by the Tat system, being mildly inhibitory at high concentrations. These data are consistent with a model in which the REMP-bound signal peptide is shielded from recognition by the Tat translocon, and spontaneous dissociation of the REMP allows the substrate to engage the Tat machinery. Thus, the REMP does not assist with targeting to the Tat translocon, but rather temporarily shields the signal peptide.


2002 ◽  
Vol 157 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Hiroki Mori ◽  
Kenneth Cline

The thylakoid ΔpH-dependent/Tat pathway is a novel system with the remarkable ability to transport tightly folded precursor proteins using a transmembrane ΔpH as the sole energy source. Three known components of the transport machinery exist in two distinct subcomplexes. A cpTatC–Hcf106 complex serves as precursor receptor and a Tha4 complex is required after precursor recognition. Here we report that Tha4 assembles with cpTatC–Hcf106 during the translocation step. Interactions among components were examined by chemical cross-linking of intact thylakoids followed by immunoprecipitation and immunoblotting. cpTatC and Hcf106 were consistently associated under all conditions tested. In contrast, Tha4 was only associated with cpTatC and Hcf106 in the presence of a functional precursor and the ΔpH. Interestingly, a synthetic signal peptide could replace intact precursor in triggering assembly. The association of all three components was transient and dissipated upon the completion of protein translocation. Such an assembly–disassembly cycle could explain how the ΔpH/Tat system can assemble translocases to accommodate folded proteins of varied size. It also explains in part how the system can exist in the membrane without compromising its ion and proton permeability barrier.


Sign in / Sign up

Export Citation Format

Share Document