scholarly journals Insulation of the σF Regulatory System in Bacillus subtilis

2004 ◽  
Vol 186 (13) ◽  
pp. 4390-4394 ◽  
Author(s):  
Karen Carniol ◽  
Tae-Jong Kim ◽  
Chester W. Price ◽  
Richard Losick

ABSTRACT The transcription factors σF and σB are related RNA polymerase sigma factors that govern dissimilar networks of adaptation to stress conditions in Bacillus subtilis. The two factors are controlled by closely related regulatory pathways, involving protein kinases and phosphatases. We report that insulation of the σF pathway from the σB pathway involves the integrated action of both the cognate kinase and the cognate phosphatase.

2002 ◽  
Vol 66 (3) ◽  
pp. 373-395 ◽  
Author(s):  
Regine Hengge-Aronis

SUMMARY The σS (RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli and related bacteria. While rapidly growing cells contain very little σS, exposure to many different stress conditions results in rapid and strong σS induction. Consequently, transcription of numerous σS-dependent genes is activated, many of which encode gene products with stress-protective functions. Multiple signal integration in the control of the cellular σS level is achieved by rpoS transcriptional and translational control as well as by regulated σS proteolysis, with various stress conditions differentially affecting these levels of σS control. Thus, a reduced growth rate results in increased rpoS transcription whereas high osmolarity, low temperature, acidic pH, and some late-log-phase signals stimulate the translation of already present rpoS mRNA. In addition, carbon starvation, high osmolarity, acidic pH, and high temperature result in stabilization of σS, which, under nonstress conditions, is degraded with a half-life of one to several minutes. Important cis-regulatory determinants as well as trans-acting regulatory factors involved at all levels of σS regulation have been identified. rpoS translation is controlled by several proteins (Hfq and HU) and small regulatory RNAs that probably affect the secondary structure of rpoS mRNA. For σS proteolysis, the response regulator RssB is essential. RssB is a specific direct σS recognition factor, whose affinity for σS is modulated by phosphorylation of its receiver domain. RssB delivers σS to the ClpXP protease, where σS is unfolded and completely degraded. This review summarizes our current knowledge about the molecular functions and interactions of these components and tries to establish a framework for further research on the mode of multiple signal input into this complex regulatory system.


1999 ◽  
Vol 181 (8) ◽  
pp. 2346-2350 ◽  
Author(s):  
Matthew Lord ◽  
Daniela Barillà ◽  
Michael D. Yudkin

ABSTRACT Soon after asymmetric septation in sporulating Bacillus subtilis cells, ςF is liberated in the prespore from inhibition by SpoIIAB. To initiate transcription from its cognate promoters, ςF must compete with ςA, the housekeeping sigma factor in the predivisional cell, for binding to core RNA polymerase (E). To estimate the relative affinity of E for ςA and ςF, we made separate mixtures of E with each of the two sigma factors, allowed reconstitution of the holoenzyme, and measured the concentration of free E remaining in each mixture. The affinity of E for ςF was found to be about 25-fold lower than that for ςA. We used quantitative Western blotting to estimate the concentrations of E, ςA, and ςF in sporulating cells. The cellular concentrations of E and ςA were both about 7.5 μM, and neither changed significantly during the first 3 h of sporulation. The concentration of ςF was extremely low at the beginning of sporulation, but it rose rapidly to a peak after about 2 h. At its peak, the concentration of ςF was some twofold higher than that of ςA. This difference in concentration cannot adequately account for the replacement of ςA holoenzyme by ςF holoenzyme in the prespore, and it seems that some further mechanism—perhaps the synthesis or activation of an anti-ςA factor—must be responsible for this replacement.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 756
Author(s):  
Fumiyuki Soma ◽  
Fuminori Takahashi ◽  
Kazuko Yamaguchi-Shinozaki ◽  
Kazuo Shinozaki

Drought is a severe and complex abiotic stress that negatively affects plant growth and crop yields. Numerous genes with various functions are induced in response to drought stress to acquire drought stress tolerance. The phytohormone abscisic acid (ABA) accumulates mainly in the leaves in response to drought stress and then activates subclass III SNF1-related protein kinases 2 (SnRK2s), which are key phosphoregulators of ABA signaling. ABA mediates a wide variety of gene expression processes through stress-responsive transcription factors, including ABA-RESPONSIVE ELEMENT BINDING PROTEINS (AREBs)/ABRE-BINDING FACTORS (ABFs) and several other transcription factors. Seed plants have another type of SnRK2s, ABA-unresponsive subclass I SnRK2s, that mediates the stability of gene expression through the mRNA decay pathway and plant growth under drought stress in an ABA-independent manner. Recent research has elucidated the upstream regulators of SnRK2s, RAF-like protein kinases, involved in early responses to drought stress. ABA-independent transcriptional regulatory systems and ABA-responsive regulation function in drought-responsive gene expression. DEHYDRATION RESPONSIVE ELEMENT (DRE) is an important cis-acting element in ABA-independent transcription, whereas ABA-RESPONSIVE ELEMENT (ABRE) cis-acting element functions in ABA-responsive transcription. In this review article, we summarize recent advances in research on cellular and molecular drought stress responses and focus on phosphorylation signaling and transcription networks in Arabidopsis and crops. We also highlight gene networks of transcriptional regulation through two major regulatory pathways, ABA-dependent and ABA-independent pathways, that ABA-responsive subclass III SnRK2s and ABA-unresponsive subclass I SnRK2s mediate, respectively. We also discuss crosstalk in these regulatory systems under drought stress.


2010 ◽  
Vol 192 (21) ◽  
pp. 5616-5624 ◽  
Author(s):  
Vasant K. Chary ◽  
Panagiotis Xenopoulos ◽  
Avigdor Eldar ◽  
Patrick J. Piggot

ABSTRACT Compartmentalization of the activities of RNA polymerase sigma factors is a hallmark of formation of spores by Bacillus subtilis. It is initiated soon after the asymmetrically located sporulation division takes place with the activation of σF in the smaller cell, the prespore. σF then directs a signal via the membrane protease SpoIIGA to activate σE in the larger mother cell by processing of pro-σE. Here, we show that σE can be activated in the prespore with little effect on sporulation efficiency, implying that complete compartmentalization of σE activity is not essential for spore formation. σE activity in the prespore can be obtained by inducing transcription in the prespore of spoIIGA or of sigE*, which encodes a constitutively active form of σE, but not of spoIIGB, which encodes pro-σE. We infer that σE compartmentalization is partially attributed to a competition between the compartments for the activation signaling protein SpoIIR. Normally, SpoIIGA is predominantly located in the mother cell and as a consequence confines σE activation to it. In addition, we find that CsfB, previously shown to inhibit σG, is independently inhibiting σE activity in the prespore. CsfB thus appears to serve a gatekeeper function in blocking the action of two sigma factors in the prespore: it prevents σG from becoming active before completion of engulfment and helps prevent σE from becoming active at all.


Sign in / Sign up

Export Citation Format

Share Document