scholarly journals P2 Growth Restriction on an rpoC Mutant Is Suppressed by Alleles of the Rz1 Homolog lysC

2004 ◽  
Vol 186 (14) ◽  
pp. 4628-4637 ◽  
Author(s):  
Dmitry Markov ◽  
Gail E. Christie ◽  
Brian Sauer ◽  
Richard Calendar ◽  
Taehyun Park ◽  
...  

ABSTRACT Escherichia coli strain 397c carries a temperature-sensitive mutation, rpoC397, that removes the last 50 amino acids of the RNA polymerase β′ subunit and is nonpermissive for plating of bacteriophage P2. P2 gor mutants productively infect 397c and define a new gene, lysC, encoded by a reading frame that extensively overlaps the P2 lysis accessory gene, lysB. The unusual location of lysC with respect to lysB is reminiscent of the Rz/Rz1 lysis gene pair of phage λ. Indeed, coexpression of lysB and lysC complemented the growth defect of λ Rz/Rz1 null mutants, indicating that the LysB/C pair is similar to Rz/Rz1 in both gene arrangement and function. Cells carrying the rpoC397 mutation exhibited an early onset of P2-induced lysis, which was suppressed by the gor mutation in lysC. We propose that changes in host gene expression resulting from the rpoC397 mutation result in changes in the composition of the bacterial cell wall, making the cell more susceptible to P2-mediated lysis and preventing accumulation of progeny phage sufficient for plaque formation.

Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 833-841
Author(s):  
Yu Jiang ◽  
Al Scarpa ◽  
Li Zhang ◽  
Shelly Stone ◽  
Ed Feliciano ◽  
...  

Abstract The BET3 gene in the yeast Saccharomyces cerevisiae encodes a 22-kD hydrophilic protein that is required for vesicular transport between the ER and Golgi complex. To gain insight into the role of Bet3p, we screened for genes that suppress the growth defect of the temperature-sensitive bet3 mutant at 34°. This high copy suppressor screen resulted in the isolation of a new gene, called BET5. BET5 encodes an essential 18-kD hydrophilic protein that in high copy allows growth of the bet3-1 mutant, but not other ER accumulating mutants. This strong and specific suppression is consistent with the fact that Bet3p and Bet5p are members of the same complex. Using PCR mutagenesis, we generated a temperature-sensitive mutation in BET5 (bet5-1) that blocks the transport of carboxypeptidase Y to the vacuole and prevents secretion of the yeast pheromone α-factor at 37°. The precursor forms of these proteins that accumulate in this mutant are indicative of a block in membrane traffic between the ER and Golgi apparatus. High copy suppressors of the bet5-1 mutant include several genes whose products are required for ER-to-Golgi transport (BET1, SEC22, USO1 and DSS4) and the maintenance of the Golgi (ANP1). These findings support the hypothesis that Bet5p acts in conjunction with Bet3p to mediate a late stage in ER-to-Golgi transport. The identification of mammalian homologues of Bet3p and Bet5p implies that the Bet3p/Bet5p complex is highly conserved in evolution.


1992 ◽  
Vol 12 (9) ◽  
pp. 3843-3856 ◽  
Author(s):  
J P O'Connor ◽  
C L Peebles

We have identified an essential Saccharomyces cerevisiae gene, PTA1, that affects pre-tRNA processing. PTA1 was initially defined by a UV-induced mutation, pta1-1, that causes the accumulation of all 10 end-trimmed, intron-containing pre-tRNAs and temperature-sensitive but osmotic-remedial growth. pta1-1 does not appear to be an allele of any other known gene affecting pre-tRNA processing. Extracts prepared from pta1-1 strains had normal pre-tRNA splicing endonuclease activity. pta1-1 was suppressed by the ochre suppressor tRNA gene SUP11, indicating that the pta1-1 mutation creates a termination codon within a protein reading frame. The PTA1 gene was isolated from a genomic library by complementation of the pta1-1 growth defect. Episome-borne PTA1 directs recombination to the pta1-1 locus. PTA1 has been mapped to the left arm of chromosome I near CDC24; the gene was sequenced and could encode a protein of 785 amino acids with a molecular weight of 88,417. No other protein sequences similar to that of the predicted PTA1 gene product have been identified within the EMBL or GenBank data base. Disruption of PTA1 near the carboxy terminus of the putative open reading frame was lethal. Possible functions of the PTA1 gene product are discussed.


1991 ◽  
Vol 11 (11) ◽  
pp. 5693-5700 ◽  
Author(s):  
N Nakazawa ◽  
S Harashima ◽  
Y Oshima

We have isolated a class of mutants, aar2, showing the alpha mating type due to a defect in a1-alpha 2 repression but with alpha 2 repression activity from a nonmater strain of Saccharomyces cerevisiae expressing both a and alpha mating-type information in duplicate. Cells of the aar2 mutant and the aar2 disruptant also show a growth defect. A DNA fragment complementing the aar2 mutation contains an open reading frame consisting of 355 amino acid codons. Northern hybridization showed that cells of the aar2 mutant and disruptant contained alpha 1 and alpha 2 transcripts of the MAT alpha gene (or HML alpha in sir3 cells), but their a1 transcript of MATa (or HMRa in sir3 cells) migrated more slowly than that of the wild-type cells on gel electrophoresis and gave a diffused band. Primer extension analysis showed that the aar2 mutant and disruptant have a defect in splicing two short introns of the a1 pre-mRNA but not in splicing pre-mRNA of ACT1. The alpha mating type, but not the slow-growing phenotype, of the aar2 mutant was suppressed by introduction of an intronless MATa1 DNA. Thus, the AAR2 gene is involved in splicing pre-mRNA of the a1 cistron and other genes that are important for cell growth. The AAR2 locus was mapped on chromosome II beside the SSA3 locus, with a 276-bp space, but was not allelic to either PRP5 or PRP6, which are both located on chromosome II and function in splicing pre-mRNA of ACT1.


Genetics ◽  
1989 ◽  
Vol 121 (4) ◽  
pp. 675-683
Author(s):  
A E Adams ◽  
D Botstein

Abstract A gene whose product is likely to interact with yeast actin was identified by the isolation of pseudorevertants carrying dominant suppressors of the temperature-sensitive (Ts) act1-1 mutation. Of 30 independent revertants analyzed, 29 were found to carry extragenic suppressor mutations and of these, 24/24 tested were found to be linked to each other. This linkage group identifies a new gene SAC6, whose product, by several genetic criteria, is likely to interact intimately with actin. First, although act1-1 sac6 strains are temperature-independent (Ts+), 4/17 sac6 mutant alleles tested are Ts in an ACT1+ background. Moreover, four Ts+ pseudorevertants of these ACT1+ sac6 mutants carry suppressor mutations in ACT1; significantly, three of these are again Ts in a SAC6+ background, and are most likely new act1 mutant alleles. Thus, mutations in ACT1 and SAC6 can suppress each other's defects. Second, sac6 mutations can suppress the Ts defects of the act1-1 and act1-2, but not act1-4, mutations. This allele specificity indicates the sac6 mutations do not suppress by simply bypassing the function of actin at high temperature. Third, act1-4 sac6 strains have a growth defect greater than that due to either of the single mutations alone, again suggesting an interaction between the two proteins. The mutant sac6 gene was cloned on the basis of dominant suppression from an act1-1 sac6 mutant library, and was then mapped to chromosome IV, less than 2 cM from ARO1.


1991 ◽  
Vol 11 (11) ◽  
pp. 5693-5700
Author(s):  
N Nakazawa ◽  
S Harashima ◽  
Y Oshima

We have isolated a class of mutants, aar2, showing the alpha mating type due to a defect in a1-alpha 2 repression but with alpha 2 repression activity from a nonmater strain of Saccharomyces cerevisiae expressing both a and alpha mating-type information in duplicate. Cells of the aar2 mutant and the aar2 disruptant also show a growth defect. A DNA fragment complementing the aar2 mutation contains an open reading frame consisting of 355 amino acid codons. Northern hybridization showed that cells of the aar2 mutant and disruptant contained alpha 1 and alpha 2 transcripts of the MAT alpha gene (or HML alpha in sir3 cells), but their a1 transcript of MATa (or HMRa in sir3 cells) migrated more slowly than that of the wild-type cells on gel electrophoresis and gave a diffused band. Primer extension analysis showed that the aar2 mutant and disruptant have a defect in splicing two short introns of the a1 pre-mRNA but not in splicing pre-mRNA of ACT1. The alpha mating type, but not the slow-growing phenotype, of the aar2 mutant was suppressed by introduction of an intronless MATa1 DNA. Thus, the AAR2 gene is involved in splicing pre-mRNA of the a1 cistron and other genes that are important for cell growth. The AAR2 locus was mapped on chromosome II beside the SSA3 locus, with a 276-bp space, but was not allelic to either PRP5 or PRP6, which are both located on chromosome II and function in splicing pre-mRNA of ACT1.


1990 ◽  
Vol 10 (5) ◽  
pp. 2308-2314 ◽  
Author(s):  
T M Dunn ◽  
D Shortle

Extragenic suppressors of a new temperature-sensitive mutation (act1-4) in the actin gene of Saccharomyces cerevisiae were isolated in an attempt to identify genes whose products interact directly with actin. One suppressor with a cold-sensitive growth phenotype defined the new gene, SAC7, which was mapped, cloned, sequenced, and disrupted. Genetic analysis of strains that are disrupted for SAC7 demonstrated that the protein is required for normal growth and actin assembly at low temperatures. Surprisingly, null mutations in SAC7 also suppressed the temperature-sensitive growth defect caused by the act1-1 and act1-4 mutations, whereas they were lethal in combination with the temperature-sensitive allele act1-2. These results support the notion that the SAC7 gene product is involved in the normal assembly or function or both of actin.


1990 ◽  
Vol 10 (5) ◽  
pp. 2308-2314
Author(s):  
T M Dunn ◽  
D Shortle

Extragenic suppressors of a new temperature-sensitive mutation (act1-4) in the actin gene of Saccharomyces cerevisiae were isolated in an attempt to identify genes whose products interact directly with actin. One suppressor with a cold-sensitive growth phenotype defined the new gene, SAC7, which was mapped, cloned, sequenced, and disrupted. Genetic analysis of strains that are disrupted for SAC7 demonstrated that the protein is required for normal growth and actin assembly at low temperatures. Surprisingly, null mutations in SAC7 also suppressed the temperature-sensitive growth defect caused by the act1-1 and act1-4 mutations, whereas they were lethal in combination with the temperature-sensitive allele act1-2. These results support the notion that the SAC7 gene product is involved in the normal assembly or function or both of actin.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 879-886 ◽  
Author(s):  
E A Malone ◽  
J H Thomas

Abstract In Caenorhabditis elegans, formation of the developmentally arrested dauer larva is induced by high levels of a constitutively secreted pheromone. Synergy between two groups of incompletely penetrant dauer-constitutive (Daf-c) mutations has recently led to a proposal that these two groups of genes are partially redundant and function in two parallel pathways that regulate dauer formation. A possible weakness in this reasoning is that the mutations used to identify the synergy were specifically obtained as incompletely penetrant mutations. Here we use screens to identify new Daf-c alleles without any requirement for partial penetrance. Nevertheless, 22 of the 25 new mutations are incompletely penetrant mutations in 6 previously identified genes. Among these are mutations in daf-8 and daf-19, genes for which only one mutation had been previously identified. Also included in this group are three daf-1 alleles that do not exhibit the maternal rescue characteristic of other daf-1 alleles. Two of the 25 new mutations are fully penetrant and are alleles of daf-2, the one gene in which a fully penetrant mutation had been found earlier. Finally, one of the 25 new mutations is semidominant, temperature-sensitive, and identifies a new gene, daf-28. The results demonstrate that an incompletely penetrant Daf-c phenotype is characteristic of mutations in most Daf-c genes other than daf-2. This finding strengthens the hypothesis that a branched genetic pathway controls dauer formation.


1992 ◽  
Vol 12 (9) ◽  
pp. 3843-3856
Author(s):  
J P O'Connor ◽  
C L Peebles

We have identified an essential Saccharomyces cerevisiae gene, PTA1, that affects pre-tRNA processing. PTA1 was initially defined by a UV-induced mutation, pta1-1, that causes the accumulation of all 10 end-trimmed, intron-containing pre-tRNAs and temperature-sensitive but osmotic-remedial growth. pta1-1 does not appear to be an allele of any other known gene affecting pre-tRNA processing. Extracts prepared from pta1-1 strains had normal pre-tRNA splicing endonuclease activity. pta1-1 was suppressed by the ochre suppressor tRNA gene SUP11, indicating that the pta1-1 mutation creates a termination codon within a protein reading frame. The PTA1 gene was isolated from a genomic library by complementation of the pta1-1 growth defect. Episome-borne PTA1 directs recombination to the pta1-1 locus. PTA1 has been mapped to the left arm of chromosome I near CDC24; the gene was sequenced and could encode a protein of 785 amino acids with a molecular weight of 88,417. No other protein sequences similar to that of the predicted PTA1 gene product have been identified within the EMBL or GenBank data base. Disruption of PTA1 near the carboxy terminus of the putative open reading frame was lethal. Possible functions of the PTA1 gene product are discussed.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
K N Huang ◽  
L S Symington

Abstract The PKC1 gene product, protein kinase C, regulates a mitogen-activated protein kinase (MAPK) cascade, which is implicated in cell wall metabolism. Previously, we identified the pkc1-4 allele in a screen for mutants with increased rates of recombination, indicating that PKC1 may also regulate DNA metabolism. The pkc1-4 allele also conferred a temperature-sensitive (ts) growth defect. Extragenic suppressors were isolated that suppress both the ts and hyperrecombination phenotypes conferred by the pkc1-4 mutation. Eight of these suppressors for into two complementation groups, designated KCS1 and KCS2. KCS1 was cloned and found to encode a novel protein with homology to the basic leucine zipper family of transcription factors. KCS2 is allelic with PTC1, a previously identified type 2C serine/threonine protein phosphatase. Although mutation of either KCS1 or PTC1 causes little apparent phenotype, the kcs1 delta ptc1 delta double mutant fails to grow at 30 degrees. Furthermore, the ptc1 deletion mutation is synthetically lethal in combination with a mutation in MPK1, which encodes a MAPK homologue proposed to act in the PKC1 pathway. Because PTC1 was initially isolated as a component of the Hog1p MAPK pathway, it appears that these two MAPK cascades share a common regulatory feature.


Sign in / Sign up

Export Citation Format

Share Document