scholarly journals A Phosphohexomutase from the Archaeon Sulfolobus solfataricus Is Covalently Modified by Phosphorylation on Serine

2005 ◽  
Vol 187 (12) ◽  
pp. 4270-4275 ◽  
Author(s):  
W. Keith Ray ◽  
Sabrina M. Keith ◽  
Andrea M. DeSantis ◽  
Jeremy P. Hunt ◽  
Timothy J. Larson ◽  
...  

ABSTRACT A phosphoserine-containing peptide was identified from tryptic digests from Sulfolobus solfataricus P1 by liquid chromatography-tandem mass spectrometry. Its amino acid sequence closely matched that bracketing Ser-309 in the predicted protein product of open reading frame sso0207, a putative phosphohexomutase, in the genome of S. solfataricus P2. Open reading frame sso0207 was cloned, and its protein product expressed in Escherichia coli. The recombinant protein proved capable of interconverting mannose 1-phosphate and mannose 6-phosphate, as well as glucose 1-phosphate and glucose 6-phosphate, in vitro. It displayed no catalytic activity toward glucosamine 6-phosphate or N-acetylglucosamine 6-phosphate. Models constructed using the X-ray crystal structure of a homologous phosphohexomutase from Pseudomonas aeruginosa predicted that Ser-309 of the archaeal protein lies within the substrate binding site. The presence of a phosphoryl group at this location would be expected to electrostatically interfere with the binding of negatively charged phosphohexose substrates, thus attenuating the catalytic efficiency of the enzyme. Using site-directed mutagenesis, Ser-309 was substituted by aspartic acid to mimic the presence of a phosphoryl group. The V max of the mutationally altered protein was only 4% that of the unmodified form. Substitution of Ser-309 with larger, but uncharged, amino acids, including threonine, also decreased catalytic efficiency, but to a lesser extent—three- to fivefold. We therefore predict that phosphorylation of the enzyme in vivo serves to regulate its catalytic activity.

2004 ◽  
Vol 186 (2) ◽  
pp. 463-472 ◽  
Author(s):  
Brian H. Lower ◽  
M. Ben Potters ◽  
Peter J. Kennelly

ABSTRACT Sulfolobus solfataricus contains a membrane-associated protein kinase activity that displays a strong preference for threonine as the phospho-acceptor amino acid residue. When a partially purified detergent extract of the membrane fraction from the archaeon S. solfataricus that had been enriched for this activity was incubated with [γ-32P]ATP, radiolabeled phosphate was incorporated into roughly a dozen polypeptides, several of which contained phosphothreonine. One of the phosphothreonine-containing proteins was identified by mass peptide profiling as the product of open reading frame [ORF] sso0469. Inspection of the DNA-derived amino acid sequence of the predicted protein product of ORF sso0469 revealed the presence of sequence characteristics faintly reminiscent of the “eukaryotic” protein kinase superfamily. ORF sso0469 therefore was cloned, and its polypeptide product was expressed in Escherichia coli. The recombinant protein formed insoluble aggregates that could be dispersed using urea or detergents. The solubilized polypeptide phosphorylated several exogenous proteins in vitro, including casein, myelin basic protein, and bovine serum albumin. Mutagenic alteration of amino acids predicted to be essential for catalytic activity abolished or severely reduced catalytic activity. Phosphorylation of exogenous substrates took place on serine and, occasionally, threonine. This new archaeal protein kinase displayed no catalytic activity when GTP was substituted for ATP as the phospho-donor substrate, while Mn2+ was the preferred cofactor.


2002 ◽  
Vol 76 (23) ◽  
pp. 12312-12319 ◽  
Author(s):  
Xiao-Zhen Liang ◽  
Andrew P. Lucy ◽  
Shou-Wei Ding ◽  
Sek-Man Wong

ABSTRACT Hibiscus chlorotic ringspot virus (HCRSV) possesses a novel open reading frame (ORF) which encodes a putative 23-kDa protein (p23). We report here the in vivo detection of p23 and demonstrate its essential role in viral replication. The expression of p23 could be detected in protein extracts from transfected kenaf (Hibiscus cannabinus L.) protoplasts and in HCRSV-infected leaves. Further, direct immunoblotting of infected kenaf leaves also showed the presence of p23, and transient expression in onion and kenaf cells demonstrated that the protein is distributed throughout the cell. Site-directed mutagenesis showed that mutations introduced into the ORF of p23 abolished viral replication in kenaf protoplasts and plants but not in Chenopodium quinoa L. The loss of function of the p23 mutant M23/S33-1 could be complemented in trans upon the induced expression of p23 from an infiltrated construct bearing the ORF (pCam23). Altogether, these results demonstrate that p23 is a bona fide HCRSV protein that is expressed in vivo and suggest that p23 is indispensable for the host-specific replication of HCRSV. In addition, we show that p23 does not bind nucleic acids in vitro and does not act as a suppressor of posttranscriptional gene silencing in transgenic tobacco carrying a green fluorescent protein.


2007 ◽  
Vol 88 (11) ◽  
pp. 2941-2951 ◽  
Author(s):  
Mohammad M. Ahasan ◽  
Clive Sweet

Murine cytomegalovirus mutant Rc29, with a premature stop codon mutation in the m29 open reading frame (ORF), produced no apparent phenotype in cell culture or following infection of BALB/c mice. In contrast, a similar mutant virus, Rc29.1, with a premature stop codon mutation in its m29.1 ORF, showed reduced virus yields (2–3 log10 p.f.u. ml−1) in tissue culture. Mutant virus yields in BALB/c mice were delayed, reduced (∼1 log10 p.f.u. per tissue) and persisted less well in salivary glands compared with wild-type (wt) and revertant (Rv29.1) virus. In severe combined immunodeficiency mice, Rc29.1 virus showed delayed and reduced replication initially in all tissues (liver, spleen, kidneys, heart, lung and salivary glands). This delayed death until 31 days post-infection (p.i.) compared with wt (23 days p.i.) but at death virus yields were similar to wt. m29 gene transcription was initiated at early times post-infection, while production of a transcript from ORF m29.1 in the presence of cycloheximide indicated that it was an immediate-early gene. ORFs m29.1 and M28 are expressed from a bicistronic message, which is spliced infrequently. However, it is likely that each ORF expresses its own protein, as antiserum derived in rabbits to the m29.1 protein expressed in bacteria from the m29.1 ORF detected only one protein in Western blot analysis of the size predicted for the m29.1 protein. Our results suggest that neither ORF is essential for virus replication but m29.1 is important for optimal viral growth in vitro and in vivo.


1998 ◽  
Vol 72 (10) ◽  
pp. 8425-8429 ◽  
Author(s):  
Giovanna Bergamini ◽  
Marko Reschke ◽  
Maria Concetta Battista ◽  
Maria Cristina Boccuni ◽  
Fabio Campanini ◽  
...  

ABSTRACT β2.7 is the major early transcript produced during human cytomegalovirus infection. This abundantly expressed RNA is polysome associated, but no protein product has ever been detected. In this study, a stable peptide of 24 kDa was produced in vitro from the major open reading frame (ORF), TRL4. Following transient transfection, the intracellular localization was nucleolar and the expression was posttranscriptionally inhibited by the 5′ sequence of the transcript, which harbors two short upstream ORFs.


1998 ◽  
Vol 72 (8) ◽  
pp. 6956-6959 ◽  
Author(s):  
Hong-Wu Xin ◽  
Liang-Hui Ji ◽  
Simon W. Scott ◽  
Robert H. Symons ◽  
Shou-Wei Ding

ABSTRACT We found that RNA 2 of the four ilarviruses sequenced to date encodes an additional conserved open reading frame (ORF), 2b, that overlaps the 3′ end of the previously known ORF, 2a. A novel RNA species of 851 nucleotides was found to accumulate to high levels in plants infected with spinach latent virus (SpLV). Further analysis showed that RNA 4A is a subgenomic RNA of RNA 2 and encodes all of ORF 2b. Moreover, a protein species of the size expected for SpLV ORF 2b was translated in vitro from the RNA 4A-containing virion RNAs. The data support the suggestion that the SpLV 2b protein is translated in vivo. The 2b gene of ilarviruses, which is not encoded by alfamoviruses and bromoviruses, shares several features with the previously reported cucumovirus 2b gene; however, their encoded proteins share no detectable sequence similarities. The evolutionary origin of the 2b gene is discussed.


1999 ◽  
Vol 1 (18) ◽  
pp. 1-16 ◽  
Author(s):  
Shahid Jameel

Hepatitis E virus (HEV) infection results in hepatitis E, an acute and self-limited disease. The virus is transmitted in a faecal–oral manner and is a major cause of viral hepatitis in much of the developing world, where it causes rampant sporadic infections and large epidemics. A curious feature of hepatitis E is the unusually high rates of mortality that are observed in pregnant women, in whom the disease is exacerbated by the development of fulminant liver disease. In the absence of viable in vitro propagation systems, several geographical isolates of HEV have been maintained in vivo in nonhuman primates and, subsequently, the viral genome has been cloned and sequenced. HEV has been classified provisionally into a separate family known as the HEV-like viruses, which has at least four recognised genotypes, but has only a single serotype. The viral genome is a positive-stranded (+)RNA of ~7.5 kb and encodes at least three proteins. Open reading frame 1 (ORF1) encodes the viral nonstructural polyprotein, which has domains that are homologous to some of the replication and processing enzymes found in other +RNA viruses. The HEV protein itself remains poorly characterised. The protein encoded by open reading frame 2 (ORF2) is the major HEV capsid protein, and the protein encoded by open reading frame 3 (ORF3) appears to be involved in virus–host interactions. Several questions related to the biology, epidemiology and pathogenesis of HEV remain unanswered; the progress of a few of these is reviewed here.


FEBS Letters ◽  
1983 ◽  
Vol 164 (2) ◽  
pp. 355-360 ◽  
Author(s):  
Paula A. Kiberstis ◽  
Antonello Pessi ◽  
Eric Atherton ◽  
Richard Jackson ◽  
Tony Hunter ◽  
...  

2001 ◽  
Vol 75 (4) ◽  
pp. 1697-1707 ◽  
Author(s):  
Gerardo Abenes ◽  
Manfred Lee ◽  
Erik Haghjoo ◽  
Tuong Tong ◽  
Xiaoyan Zhan ◽  
...  

ABSTRACT Using a Tn3-based transposon mutagenesis approach, we have generated a pool of murine cytomegalovirus (MCMV) mutants. In this study, one of the mutants, RvM27, which contained the transposon sequence at open reading frame M27, was characterized both in tissue culture and in immunocompetent BALB/c mice and immunodeficient SCID mice. Our results suggest that the M27 carboxyl-terminal sequence is dispensable for viral replication in vitro. Compared to the wild-type strain and a rescued virus that restored the M27 region, RvM27 was attenuated in growth in both BALB/c and SCID mice that were intraperitoneally infected with the viruses. Specifically, the titers of RvM27 in the salivary glands, lungs, spleens, livers, and kidneys of the infected SCID mice at 21 days postinfection were 50- to 500-fold lower than those of the wild-type virus and the rescued virus. Moreover, the virulence of the mutant virus appeared to be attenuated, because no deaths occurred among SCID mice infected with RvM27 for up to 37 days postinfection, while all the animals infected with the wild-type and rescued viruses died within 27 days postinfection. Our observations provide the first direct evidence to suggest that a disruption of M27 expression results in reduced viral growth and attenuated viral virulence in vivo in infected animals. Moreover, these results suggest that M27 is a viral determinant required for optimal MCMV growth and virulence in vivo and provide insight into the functions of the M27 homologues found in other animal and human CMVs as well as in other betaherpesviruses.


2009 ◽  
Vol 192 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Kathy R. Claas ◽  
J. R. Parrish ◽  
L. A. Maggio-Hall ◽  
J. C. Escalante-Semerena

ABSTRACT In Salmonella enterica, the CobT enzyme activates the lower ligand base during the assembly of the nucleotide loop of adenosylcobalamin (AdoCbl) and other cobamides. Previously, mutational analysis identified a class of alleles (class M) that failed to restore AdoCbl biosynthesis during intragenic complementation studies. To learn why class M cobT mutations were deleterious, we determined the nature of three class M cobT alleles and performed in vivo and in vitro functional analyses guided by available structural data on the wild-type CobT (CobTWT) enzyme. We analyzed the effects of the variants CobT(G257D), CobT(G171D), CobT(G320D), and CobT(C160A). The latter was not a class M variant but was of interest because of the potential role of a disulfide bond between residues C160 and C256 in CobT activity. Substitutions G171D, G257D, and G320D had profound negative effects on the catalytic efficiency of the enzyme. The C160A substitution rendered the enzyme fivefold less efficient than CobTWT. The CobT(G320D) protein was unstable, and results of structure-guided site-directed mutagenesis suggest that either variants CobT(G257D) and CobT(G171D) have less affinity for 5,6-dimethylbenzimidazole (DMB) or access of DMB to the active site is restricted in these variant proteins. The reported lack of intragenic complementation among class M cobT alleles is caused in some cases by unstable proteins, and in others it may be caused by the formation of dimers between two mutant CobT proteins with residual activity that is so low that the resulting CobT dimer cannot synthesize sufficient product to keep up with even the lowest demand for AdoCbl.


2000 ◽  
Vol 74 (23) ◽  
pp. 11099-11107 ◽  
Author(s):  
Manfred Lee ◽  
Jianqiao Xiao ◽  
Erik Haghjoo ◽  
Xiaoyan Zhan ◽  
Gerry Abenes ◽  
...  

ABSTRACT A pool of murine cytomegalovirus (MCMV) mutants was generated by using a Tn3-based transposon mutagenesis procedure. One of the mutants, RvM37, which contained the transposon sequence at open reading frame M37, was characterized both in tissue culture and in immunocompetent BALB/c and immunodeficient SCID mice. Our results provide the first direct evidence to suggest that M37 is not essential for viral replication in vitro in NIH 3T3 cells. Compared to the wild-type strain and a rescued virus that restored the M37 region, the viral mutant was severely attenuated in growth in both BALB/c and SCID mice after intraperitoneal infection. Specifically, titers of the Smith strain and rescued virus in the salivary glands, lungs, spleens, livers, and kidneys of the SCID mice at 21 days postinfection were about 5 × 105, 2 × 105, 5 × 104, 5 × 103, and 1 × 104 PFU/ml of organ homogenate, respectively; in contrast, titers of RvM37 in these organs were less than 102 PFU/ml of organ homogenate. Moreover, the virulence of the mutant virus appeared to be significantly attenuated because none of the SCID mice infected with RvM37 had died by 120 days postinfection, while all animals infected with the wild-type and rescued viruses had died by 26 days postinfection. Our results suggest that M37 probably encodes a virulence factor and is required for MCMV virulence in SCID mice and for optimal viral growth in vivo.


Sign in / Sign up

Export Citation Format

Share Document