scholarly journals Erratum for McTaggart et al., “Phylogeny and Identification of Nocardia Species on the Basis of Multilocus Sequence Analysis”

2020 ◽  
Vol 58 (8) ◽  
Author(s):  
L. R. McTaggart ◽  
S. E. Richardson ◽  
M. Witkowska ◽  
S. X. Zhang
2020 ◽  
Vol 69 (5) ◽  
pp. 728-738 ◽  
Author(s):  
Hariharan Gnanam ◽  
Siva Ganesa Karthikeyan Rajapandian ◽  
Rameshkumar Gunasekaran ◽  
Swasthikka Roshni Prithiviraj ◽  
Ram Sudarshan Ravindran ◽  
...  

2014 ◽  
Vol 59 (1) ◽  
pp. 269-275 ◽  
Author(s):  
Lisa R. McTaggart ◽  
Jennifer Doucet ◽  
Maria Witkowska ◽  
Susan E. Richardson

ABSTRACTAntimicrobial susceptibility patterns of 112 clinical isolates, 28 type strains, and 9 reference strains ofNocardiawere determined using the Sensititre Rapmyco microdilution panel (Thermo Fisher, Inc.). Isolates were identified by highly discriminatory multilocus sequence analysis and were chosen to represent the diversity of species recovered from clinical specimens in Ontario, Canada. Susceptibility to the most commonly used drug, trimethoprim-sulfamethoxazole, was observed in 97% of isolates. Linezolid and amikacin were also highly effective; 100% and 99% of all isolates demonstrated a susceptible phenotype. For the remaining antimicrobials, resistance was species specific with isolates ofNocardia otitidiscaviarum,N. brasiliensis,N. abscessuscomplex,N. novacomplex,N. transvalensiscomplex,N. farcinica, andN. cyriacigeorgicadisplaying the traditional characteristic drug pattern types. In addition, the antimicrobial susceptibility profiles of a variety of rarely encountered species isolated from clinical specimens are reported for the first time and were categorized into four additional drug pattern types. Finally, MICs for the control strainsN. novaATCC BAA-2227,N. asteroidesATCC 19247T, andN. farcinicaATCC 23826 were robustly determined to demonstrate method reproducibility and suitability of the commercial Sensititre Rapmyco panel for antimicrobial susceptibility testing ofNocardiaspp. isolated from clinical specimens. The reported values will facilitate quality control and standardization among laboratories.


Plant Disease ◽  
2021 ◽  
Author(s):  
Benzhong Fu ◽  
Jieqian Zhu ◽  
Conard Lee ◽  
Lihua Wang

Walnut bacterial blight caused by Xanthomonas arboricola pv. juglandis (Xaj) has serious repercussions for walnut production around the world. Between 2015 and 2017, disease samples were collected from six counties (Danjiangkou, Baokang, Suizhou, Shennongjia, Zigui, and Xingshan) in Hubei province, China. Fifty-nine Xaj strains were identified by morphology and specific PCR primers from 206 isolates. The genetic diversity of 60 Xaj strains (59 from Hubei plus one from Beijing) was evaluated by Multilocus Sequence Analysis (MLST), and their resistance to copper ion (Cu2+) treatment was determined. A Neighbor Joining phylogenetic dendrogram was constructed based on four sequences of housekeeping genes (atpD-dnaK-glnA-gyrB). Two groups of strains were identified whose clustering was consistent with that of glnA. The minimal inhibitory concentration of copper ion on representative Xaj strain DW3F3 (the first genome sequenced Xaj from China) was 115 μg/ml. Setting the copper resistant threshold value to 125 μg/ml, 47 and 13 strains were considered sensitive and resistant to Cu2+, respectively. Furthermore, five strains showed Cu2+ resistance at 270 μg/ml. Compared to the copB from sensitive strains, the copB gene in resistant strains had a 15-bp insertion and eight scattered single nucleotide polymorphisms. Interestingly, the clustering based on MLSA was distinct between Xaj copper ion resistant and sensitive strains.


Author(s):  
Xiaoying Rong ◽  
Ying Huang

Streptomyces griseus and related species form the biggest but least well-defined clade in the whole Streptomyces 16S rRNA gene tree. Multilocus sequence analysis (MLSA) has shown promising potential for refining Streptomyces systematics. In this investigation, strains of 18 additional S. griseus clade species were analysed and data from a previous pilot study were integrated in a larger MLSA phylogeny. The results demonstrated that MLSA of five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) is better than the previous six-gene scheme, as it provides equally good resolution and stability and is more cost-effective; MLSA using three or four of the genes also shows good resolution and robustness for differentiating most of the strains and is therefore of value for everyday use. MLSA is more suitable for discriminating strains that show >99 % 16S rRNA gene sequence similarity. DNA–DNA hybridization (DDH) between strains with representative MLSA distances revealed a strong correlation between the data of MLSA and DDH. The 70 % DDH value for current species definition corresponds to a five-gene MLSA distance of 0.007, which could be considered as the species cut-off for the S. griseus clade. It is concluded that the MLSA procedure can be a practical, reliable and robust alternative to DDH for the identification and classification of streptomycetes at the species and intraspecies levels. Based on the data from MLSA and DDH, as well as cultural and morphological characteristics, 18 species and three subspecies of the S. griseus clade are considered to be later heterotypic synonyms of 11 genomic species: Streptomyces griseinus and Streptomyces mediolani as synonyms of Streptomyces albovinaceus; Streptomyces praecox as a synonym of Streptomyces anulatus; Streptomyces olivoviridis as a synonym of Streptomyces atroolivaceus; Streptomyces griseobrunneus as a synonym of Streptomyces bacillaris; Streptomyces cavourensis subsp. washingtonensis as a synonym of Streptomyces cyaneofuscatus; Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies and Streptomyces flavofuscus as synonyms of Streptomyces fimicarius; Streptomyces flavogriseus as a synonym of Streptomyces flavovirens; Streptomyces erumpens, ‘Streptomyces ornatus’ and Streptomyces setonii as synonyms of Streptomyces griseus; Streptomyces graminofaciens as a synonym of Streptomyces halstedii; Streptomyces alboviridis, Streptomyces griseus subsp. alpha, Streptomyces griseus subsp. cretosus and Streptomyces luridiscabiei as synonyms of Streptomyces microflavus; and Streptomyces californicus and Streptomyces floridae as synonyms of Streptomyces puniceus.


2014 ◽  
Vol 80 (17) ◽  
pp. 5503-5514 ◽  
Author(s):  
Christophe Habib ◽  
Armel Houel ◽  
Aurélie Lunazzi ◽  
Jean-François Bernardet ◽  
Anne Berit Olsen ◽  
...  

ABSTRACTThe genusTenacibaculum, a member of the familyFlavobacteriaceae, is an abundant component of marine bacterial ecosystems that also hosts several fish pathogens, some of which are of serious concern for marine aquaculture. Here, we applied multilocus sequence analysis (MLSA) to 114 representatives of most known species in the genus and of the worldwide diversity of the major fish pathogenTenacibaculum maritimum. Recombination hampers precise phylogenetic reconstruction, but the data indicate intertwined environmental and pathogenic lineages, which suggests that pathogenicity evolved independently in several species. At lower phylogenetic levels recombination is also important, and the speciesT. maritimumconstitutes a cohesive group of isolates. Importantly, the data reveal no trace of long-distance dissemination that could be linked to international fish movements. Instead, the high number of distinct genotypes suggests an endemic distribution of strains. The MLSA scheme and the data described in this study will help in monitoringTenacibaculuminfections in marine aquaculture; we show, for instance, that isolates from tenacibaculosis outbreaks in Norwegian salmon farms are related toT. dicentrarchi, a recently described species.


2013 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Paulina Estrada-de los Santos ◽  
Pablo Vinuesa ◽  
Lourdes Martínez-Aguilar ◽  
Ann M. Hirsch ◽  
Jesús Caballero-Mellado

Sign in / Sign up

Export Citation Format

Share Document