scholarly journals Assessment of Ribosomal Large-Subunit D1-D2, Internal Transcribed Spacer 1, and Internal Transcribed Spacer 2 Regions as Targets for Molecular Identification of Medically Important Aspergillus Species

2005 ◽  
Vol 43 (5) ◽  
pp. 2092-2103 ◽  
Author(s):  
H. P. Hinrikson ◽  
S. F. Hurst ◽  
T. J. Lott ◽  
D. W. Warnock ◽  
C. J. Morrison
2008 ◽  
Vol 276 (1657) ◽  
pp. 761-767 ◽  
Author(s):  
Yuki Ogura-Tsujita ◽  
Gerhard Gebauer ◽  
Toshimasa Hashimoto ◽  
Hidetaka Umata ◽  
Tomohisa Yukawa

We investigated the physiological ecology of the Asian non-photosynthetic orchid Gastrodia confusa . We revealed its mycorrhizal partners by using molecular identification and identified its ultimate nutritional source by analysing carbon and nitrogen natural stable isotope abundances. Molecular identification using internal transcribed spacer and large subunit nrDNA sequences showed that G. confusa associates with several species of litter- and wood-decomposer Mycena fungi. The carbon and nitrogen isotope signatures of G. confusa were analysed together with photosynthetic plant reference samples and samples of the ectomycorrhizal epiparasite Monotropa uniflora . We found that G. confusa was highly enriched in 13 C but not greatly in 15 N, while M. uniflora was highly enriched in both 13 C and 15 N. The 13 C and 15 N signatures of G. confusa were the closest to those of the fruit bodies of saprotrophic fungi. Our results demonstrate for the first time using molecular and mass-spectrometric approaches that myco-heterotrophic plants gain carbon through parasitism of wood or litter decaying fungi. Furthermore, we demonstrate that, several otherwise free-living non-mycorrhizal, Mycena can be mycorrhizal partners of orchids.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
James M. Hodge ◽  
Andrey A. Yurchenko ◽  
Dmitriy A. Karagodin ◽  
Reem A. Masri ◽  
Ryan C. Smith ◽  
...  

Abstract Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


Sign in / Sign up

Export Citation Format

Share Document