scholarly journals Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes

2015 ◽  
Vol 89 (10) ◽  
pp. 5330-5339 ◽  
Author(s):  
Hayato Murakoshi ◽  
Tomohiro Akahoshi ◽  
Madoka Koyanagi ◽  
Takayuki Chikata ◽  
Takuya Naruto ◽  
...  

ABSTRACTIdentification and characterization of CD8+T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8+T cells have been only partially identified. In this study, we sought to identify CD8+T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8+T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P= 2.2 × 10−11) and positively associated with CD4 count (P= 1.2 × 10−11), indicating strong synergistic effects of these T cells on HIV-1 controlin vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8+T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes.IMPORTANCEHLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted and 3 HLA-B*67:01-restricted CTLs, suggesting that these CTLs play a predominant role in HIV-1 control. The 13 CTLs showed synergistic effects on HIV-1 control. Twelve out of these 13 epitopes were recognized as conserved or cross-recognized ones. These findings strongly suggest that these 12 epitopes are candidates for antigens for AIDS vaccines.

2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Yu Zhang ◽  
Nozomi Kuse ◽  
Tomohiro Akahoshi ◽  
Takayuki Chikata ◽  
Hiroyuki Gatanaga ◽  
...  

ABSTRACT The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo. HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1. IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.


10.1038/4716 ◽  
1999 ◽  
Vol 5 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Scott J. Brodie ◽  
Deborah A. Lewinsohn ◽  
Bruce K. Patterson ◽  
Daniel Jiyamapa ◽  
John Krieger ◽  
...  
Keyword(s):  
T Cells ◽  

2020 ◽  
Author(s):  
Yu Zhang ◽  
Hayato Murakoshi ◽  
Takayuki Chikata ◽  
Tomohiro Akahoshi ◽  
Giang Van Tran ◽  
...  

The Gag280 mutation is associated with HLA-C*01:02 but not with HLA-B*52:01 in subtype A/E-infected individuals, whereas this mutation is associated with HLA-B*52:01 but not with HLA-C*01:02 in subtype B infections. Although it is known that the Gag280 mutant is selected by HLA-B*52:01-restricted GagRI8 (Gag275-282)-specific T-cells in subtype B infections, it remains unknown why this Gag280 mutation is associated with HLA-C*01:02 rather than HLA-B*52:01 in subtype A/E infections. The subtype B and A/E viruses have different consensus sequence, with Thr and Val at Gag280, respectively. To clarify the effect of this difference in Gag280 consensus sequence, we investigated the role of HLA-C*01:02-restricted GagYI9 (Gag277-285)-specific T cells in selection of Gag280 mutations in subtype A/E-infected Vietnamese and subtype B-infected Japanese individuals. GagYI9-4V-specific T-cells, which were frequently elicited in Vietnamese individuals infected with the consensus-type A/E virus, failed to recognize GagV280T mutant A/E virus-infected cells. GagYI9-4T mutant epitope-specific T-cells, which were weakly elicited in individuals infected with the mutant A/E virus, had weak or no ability to recognize the mutant virus. These results account for the mechanism for selection and accumulation of GagV280T mutants in the case of subtype A/E infections. In contrast, HLA-C*01:02-restricted GagYI9-4T-specific T-cells were weakly elicited in Japanese individuals infected with the subtype B virus, explaining why HLA-C*01:02-restricted Gag280 mutations are not accumulated in the case of a subtype B infection. The present study demonstrated that a difference in the Gag280 consensus sequence influenced the elicitation of the GagYI9-specific T-cells involved in the accumulation of HLA-C*01:02-associated Gag280 mutations. IMPORTANCE HIV-1 mutations escaped from HIV-specific CD8+ T-cells are mostly detected as HLA-associated mutations. A diversity of HLA-associated mutations is somewhat distinct to each race and region, since HLA allele distribution differs among them. A difference in the consensus sequence among HIV-1 subtypes may also influence the diversity of HLA-associated mutations. HLA-C*01:02-associated GagV280T and HLA-B*52:01-associated GagT280A/S mutations were previously identified in HIV-1 subtype A/E-infected and subtype B-infected individuals, respectively, though these subtype viruses have a different consensus sequence at Gag280. We demonstrated that the GagV280T mutant virus was selected by HLA-C*01:02-restricted GagYI9-4V-specific T-cells in subtype A/E-infected Vietnamese but that HLA-C*01:02-restricted GagYI9-4T-specific T-cells were weakly elicited in subtype B-infected Japanese. Together with our recent study which demonstrated the mechanism for the accumulation of HLA-B*52:01-associated mutations, we clarified the mechanism for the accumulation of different Gag280 mutations and the effect of the difference in the consensus sequence on the accumulation of escape mutations.


2021 ◽  
Vol 22 (16) ◽  
pp. 8366
Author(s):  
Ignacio Relaño-Rodríguez ◽  
María de la Sierra Espinar-Buitrago ◽  
Vanessa Martín-Cañadilla ◽  
Rafael Gómez-Ramírez ◽  
María Ángeles Muñoz-Fernández

Human immunodeficiency virus (HIV-1) is still a major problem, not only in developing countries but is also re-emerging in several developed countries, thus the development of new compounds able to inhibit the virus, either for prophylaxis or treatment, is still needed. Nanotechnology has provided the science community with several new tools for biomedical applications. G2-S16 is a polyanionic carbosilane dendrimer capable of inhibiting HIV-1 in vitro and in vivo by interacting directly with viral particles. One of the main barriers for HIV-1 eradication is the reservoirs created in primoinfection. These reservoirs, mainly in T cells, are untargetable by actual drugs or immune system. Thus, one approach is inhibiting HIV-1 from reaching these reservoir cells. In this context, macrophages play a main role as they can deliver viral particles to T cells establishing reservoirs. We showed that G2-S16 dendrimer is capable of inhibiting the infection from infected macrophages to healthy T CD4/CD8 lymphocytes by eliminating HIV-1 infectivity inside macrophages, so they are not able to carry infectious particles to other body locations, thus preventing the reservoirs from forming.


2010 ◽  
Vol 84 (23) ◽  
pp. 12300-12314 ◽  
Author(s):  
Hanna-Mari Tervo ◽  
Oliver T. Keppler

ABSTRACT An immunocompetent, permissive, small-animal model would be valuable for the study of human immunodeficiency virus type 1 (HIV-1) pathogenesis and for the testing of drug and vaccine candidates. However, the development of such a model has been hampered by the inability of primary rodent cells to efficiently support several steps of the HIV-1 replication cycle. Although transgenesis of the HIV receptor complex and human cyclin T1 have been beneficial, additional late-phase blocks prevent robust replication of HIV-1 in rodents and limit the range of in vivo applications. In this study, we explored the HIV-1 susceptibility of rabbit primary T cells and macrophages. Envelope-specific and coreceptor-dependent entry of HIV-1 was achieved by expressing human CD4 and CCR5. A block of HIV-1 DNA synthesis, likely mediated by TRIM5, was overcome by limited changes to the HIV-1 gag gene. Unlike with mice and rats, primary cells from rabbits supported the functions of the regulatory viral proteins Tat and Rev, Gag processing, and the release of HIV-1 particles at levels comparable to those in human cells. While HIV-1 produced by rabbit T cells was highly infectious, a macrophage-specific infectivity defect became manifest by a complex pattern of mutations in the viral genome, only part of which were deamination dependent. These results demonstrate a considerable natural HIV-1 permissivity of the rabbit species and suggest that receptor complex transgenesis combined with modifications in gag and possibly vif of HIV-1 to evade species-specific restriction factors might render lagomorphs fully permissive to infection by this pathogenic human lentivirus.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1823-1827 ◽  
Author(s):  
Bregje Mommaas ◽  
Janine A. Stegehuis-Kamp ◽  
Astrid G. van Halteren ◽  
Michel Kester ◽  
Jürgen Enczmann ◽  
...  

AbstractUmbilical cord blood transplantation is applied as treatment for mainly pediatric patients with hematologic malignancies. The clinical results show a relatively low incidence of graft-versus-host disease and leukemia relapse. Since maternal cells traffic into the fetus during pregnancy, we questioned whether cord blood has the potential to generate cytotoxic T cells specific for the hematopoietic minor histocompatibility (H) antigen HA-1 that would support the graft-versus-leukemia effect. Here, we demonstrate the feasibility of ex vivo generation of minor H antigen HA-1-specific T cells from cord blood cells. Moreover, we observed pre-existing HA-1-specific T cells in cord blood samples. Both the circulating and the ex vivo-generated HA-1-specific T cells show specific and hematopoietic restricted lysis of human leukocyte antigen-A2pos/HA-1pos (HLA-A2pos/HA-1pos) target cells, including leukemic cells. The cord blood-derived HA-1-specific cytotoxic T cells are from child origin. Thus, the so-called naive cord blood can comprise cytotoxic T cells directed at the maternal minor H antigen HA-1. The apparent immunization status of cord blood may well contribute to the in vivo graft-versus-leukemia activity after transplantation. Moreover, since the fetus cannot be primed against Y chromosome-encoded minor H antigens, cord blood is an attractive stem cell source for male patients. (Blood. 2005;105:1823-1827)


2016 ◽  
Vol 90 (16) ◽  
pp. 7066-7083 ◽  
Author(s):  
Saikrishna Gadhamsetty ◽  
Tim Coorens ◽  
Rob J. de Boer

ABSTRACTSeveral experiments suggest that in the chronic phase of human immunodeficiency virus type 1 (HIV-1) infection, CD8+cytotoxic T lymphocytes (CTL) contribute very little to the death of productively infected cells. First, the expected life span of productively infected cells is fairly long, i.e., about 1 day. Second, this life span is hardly affected by the depletion of CD8+T cells. Third, the rate at which mutants escaping a CTL response take over the viral population tends to be slow. Our main result is that all these observations are perfectly compatible with killing rates that are much faster than one per day once we invoke the fact that infected cells proceed through an eclipse phase of about 1 day before they start producing virus. Assuming that the major protective effect of CTL is cytolytic, we demonstrate that mathematical models with an eclipse phase account for the data when the killing is fast and when it varies over the life cycle of infected cells. Considering the steady state corresponding to the chronic phase of the infection, we find that the rate of immune escape and the rate at which the viral load increases following CD8+T cell depletion should reflect the viral replication rate, ρ. A meta-analysis of previous data shows that viral replication rates during chronic infection vary between 0.5 ≤ ρ ≤ 1 day−1. Balancing such fast viral replication requires killing rates that are several times larger than ρ, implying that most productively infected cells would die by cytolytic effects.IMPORTANCEMost current data suggest that cytotoxic T cells (CTL) mediate their control of human immunodeficiency virus type 1 (HIV-1) infection by nonlytic mechanisms; i.e., the data suggest that CTL hardly kill. This interpretation of these data has been based upon the general mathematical model for HIV infection. Because this model ignores the eclipse phase between the infection of a target cell and the start of viral production by that cell, we reanalyze the same data sets with novel models that do account for the eclipse phase. We find that the data are perfectly consistent with lytic control by CTL and predict that most productively infected cells are killed by CTL. Because the killing rate should balance the viral replication rate, we estimate both parameters from a large set of published experiments in which CD8+T cells were depleted in simian immunodeficiency virus (SIV)-infected monkeys. This confirms that the killing rate can be much faster than is currently appreciated.


Sign in / Sign up

Export Citation Format

Share Document