scholarly journals Baculovirus-Derived Human Immunodeficiency Virus Type 1 Virus-Like Particles Activate Dendritic Cells and Induce Ex Vivo T-Cell Responses

2006 ◽  
Vol 80 (18) ◽  
pp. 9134-9143 ◽  
Author(s):  
L. Buonaguro ◽  
M. L. Tornesello ◽  
M. Tagliamonte ◽  
R. C. Gallo ◽  
L. X. Wang ◽  
...  

ABSTRACT We have recently developed a candidate human immunodeficiency virus type 1 (HIV-1) vaccine model based on HIV-1 Pr55 gag virus-like particles (HIV-VLPs), produced in a baculovirus expression system and presenting a gp120 molecule from a Ugandan HIV-1 isolate of clade A (HIV-VLPAs). The HIV-VLPAs show the induction in BALB/c mice of systemic and mucosal neutralizing antibodies as well as cytotoxic T lymphocytes, by intraperitoneal as well as intranasal administration. In the present article, the effects of the baculovirus-expressed HIV-VLPs on human immature monocyte-derived dendritic cells (MDDCs) have been evaluated. The HIV-VLPs efficiently induce maturation and activation of MDDCs and are incorporated into MDDCs preferentially via an actin-dependent macropinocytosis and endocytosis. The HIV-VLP-activated MDDCs show enhanced Th1- and Th2-specific cytokine production, and the effects of HIV-VLPs on MDDCs are not mediated through Toll-like receptors 2 and 4 (TLR2 and -4) signaling. Finally, HIV-VLP-loaded MDDCs are able to induce a primary and secondary response in autologous human CD4+ T cells in an ex vivo immunization assay. Our results on the interaction and processing of baculovirus HIV-VLPs by MDDCs give an insight into the mechanisms underlying the immune response induced by HIV-VLPAs in vivo.

2005 ◽  
Vol 79 (11) ◽  
pp. 7059-7067 ◽  
Author(s):  
L. Buonaguro ◽  
M. L. Visciano ◽  
M. L. Tornesello ◽  
M. Tagliamonte ◽  
B. Biryahwaho ◽  
...  

ABSTRACT We have recently developed a candidate human immunodeficiency virus type 1 (HIV-1) vaccine model, based on virus-like particles (VLPs) expressing gp120 from a Ugandan HIV-1 isolate of clade A (HIV-VLPAs), which shows the induction of neutralizing antibodies as well as cytotoxic T lymphocytes (CTL) in BALB/c mice by intraperitoneal (i.p.) administration. In the present study, immunization experiments based on a multiple-dose regimen have been performed with BALB/c mice to compare different routes of administration. i.p. and intranasal (i.n.), but not oral, administration induce systemic as well as mucosal (vaginal and intestinal) immunoglobulin G (IgG) and IgA responses. These immune sera exhibit >50% ex vivo neutralizing activity against both autologous and heterologous primary isolates. Furthermore, the administration of HIV-VLPAs by the i.n. immunization route induces a specific CTL activity, although at lower efficiency than the i.p. route. The HIV-VLPAs represent an efficient strategy to stimulate both arms of immunity; furthermore, the induction of specific humoral immunity at mucosal sites, which nowadays represent the main port of entry for HIV-1 infection, is of great interest. All these properties, and the possible cross-clade in vivo protection, could make these HIV-VLPAs a good candidate for a mono- and multicomponent worldwide preventive vaccine approach not restricted to high-priority regions, such as sub-Saharan countries.


2005 ◽  
Vol 79 (14) ◽  
pp. 8861-8869 ◽  
Author(s):  
Anna Smed-Sörensen ◽  
Karin Loré ◽  
Jayanand Vasudevan ◽  
Mark K. Louder ◽  
Jan Andersson ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) plays an important role in HIV-1 transmission and pathogenesis. Here, we studied the susceptibility of ex vivo-isolated CD11c+ myeloid DCs (MDCs) and CD123+ plasmacytoid DCs (PDCs) to HIV-1 infection and the function of these cells early after infection. Both DC subsets were susceptible to CCR5- and CXCR4-using HIV-1 isolates (BaL and IIIB, respectively). However, MDCs were more susceptible to HIV-1BaL infection than donor-matched PDCs. In addition, HIV-1BaL infected MDCs more efficiently than HIV-1IIIB, whereas PDCs were equally susceptible to both isolates. While exposure to HIV-1 alone resulted in only weak maturation of DCs, Toll-like receptor 7/8 ligation induced full maturation in both infected and uninfected DCs. Maturation did not increase HIV-1 replication in infected DCs, and infected DCs retained their ability to produce tumor necrosis factor alpha after stimulation. Both HIV-1 isolates induced alpha interferon production exclusively in PDCs, irrespective of productive infection. In conclusion, PDCs and MDCs were susceptible to HIV-1 infection, but neither displayed functional defects as a consequence of infection. The difference in susceptibility of PDCs and MDCs to HIV-1 may have implications for HIV-1 transmission and DC-mediated transfer of HIV-1 to T cells.


2002 ◽  
Vol 76 (15) ◽  
pp. 7812-7821 ◽  
Author(s):  
Rogier W. Sanders ◽  
Esther C. de Jong ◽  
Christopher E. Baldwin ◽  
Joost H. N. Schuitemaker ◽  
Martien L. Kapsenberg ◽  
...  

ABSTRACT Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4+ Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.


2009 ◽  
Vol 83 (11) ◽  
pp. 5592-5605 ◽  
Author(s):  
Awet Abraha ◽  
Immaculate L. Nankya ◽  
Richard Gibson ◽  
Korey Demers ◽  
Denis M. Tebit ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) subtype C is the dominant subtype globally, due largely to the incidence of subtype C infections in sub-Saharan Africa and east Asia. We compared the relative replicative fitness (ex vivo) of the major (M) group of HIV-1 subtypes A, B, C, D, and CRF01_AE and group O isolates. To estimate pathogenic fitness, pairwise competitions were performed between CCR5-tropic (R5) or CXCR4-tropic (X4) virus isolates in peripheral blood mononuclear cells (PBMC). A general fitness order was observed among 33 HIV-1 isolates; subtype B and D HIV-1 isolates were slightly more fit than the subtype A and dramatically more fit than the 12 subtype C isolates. All group M isolates were more fit (ex vivo) than the group O isolates. To estimate ex vivo transmission fitness, a subset of primary HIV-1 isolates were examined in primary human explants from penile, cervical, and rectal tissues. Only R5 isolates and no X4 HIV-1 isolates could replicate in these tissues, whereas the spread to PM1 cells was dependent on active replication and passive virus transfer. In tissue competition experiments, subtype C isolates could compete with and, in some cases, even win over subtype A and D isolates. However, when the migratory cells from infected tissues were mixed with a susceptible cell line, the subtype C isolates were outcompeted by other subtypes, as observed in experiments with PBMC. These findings suggest that subtype C HIV-1 isolates might have equal transmission fitness but reduced pathogenic fitness relative to other group M HIV-1 isolates.


2009 ◽  
Vol 90 (11) ◽  
pp. 2777-2787 ◽  
Author(s):  
Claudia Muratori ◽  
Eliana Ruggiero ◽  
Antonella Sistigu ◽  
Roberta Bona ◽  
Maurizio Federico

Sexual transmission is now the most frequent means of diffusion of human immunodeficiency virus type 1 (HIV-1). Even if the underlying mechanism is still largely unknown, there is a consensus regarding the key role played by mucosal dendritic cells (DCs) in capturing HIV through contact with infected subepithelial lymphocytes, and their capacity to spread HIV by trans-infection. We found that HIV protease inhibitors (PIs) reduced virion endocytosis strongly in monocyte-derived immature (i) DCs contacting HIV-1-infected cells, and that this phenomenon led to dramatically impaired trans-infection activity. This inhibitory effect was not mediated by the block of viral protease activity, as it was also operative when donor cells were infected with a PI-resistant HIV-1 strain. The block of virus maturation imposed by PIs did not correlate with significant variations in the levels of virus expression in donor cells or of Gag/Env virion incorporation. Also, PIs did not affect the endocytosis activity of DCs. In contrast, we noticed that PI treatment inhibited the formation of cell–cell conjugates whilst reducing the expression of ICAM-1 in target iDCs. Our results contribute to a better delineation of the mechanisms underlying HIV-1 trans-infection activity in DCs, whilst having implications for the development of new anti-HIV microbicide strategies.


2007 ◽  
Vol 81 (12) ◽  
pp. 6563-6572 ◽  
Author(s):  
Raghavan Chinnadurai ◽  
Devi Rajan ◽  
Jan Münch ◽  
Frank Kirchhoff

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing ∼10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.


2008 ◽  
Vol 82 (17) ◽  
pp. 8900-8905 ◽  
Author(s):  
Sabrina Haupt ◽  
Norbert Donhauser ◽  
Chawaree Chaipan ◽  
Philipp Schuster ◽  
Bridget Puffer ◽  
...  

ABSTRACT Plasmacytoid dendritic cells (PDC) are major producers of type I interferons (IFN) in response to human immunodeficiency virus type 1 (HIV-1) infection. To better define the underlying mechanisms, we studied the magnitude of alpha IFN (IFN-α) induction by recombinant viruses containing changes in the Env protein that impair or disrupt CD4 binding or expressing primary env alleles with differential coreceptor tropism. We found that the CD4 binding affinity but not the viral coreceptor usage is critical for the attachment of autofluorescing HIV-1 to PDC and for subsequent IFN-α induction. Our results illustrate the importance of the gp120-CD4 interaction in determining HIV-1-induced immune stimulation via IFN-α production.


1999 ◽  
Vol 73 (4) ◽  
pp. 3449-3454 ◽  
Author(s):  
Ines Frank ◽  
Laco Kacani ◽  
Heribert Stoiber ◽  
Hella Stössel ◽  
Martin Spruth ◽  
...  

ABSTRACT During the budding process, human immunodeficiency virus type 1 (HIV-1) acquires cell surface molecules; thus, the viral surface of HIV-1 reflects the antigenic pattern of the host cell. To determine the source of HIV-1 released from cocultures of dendritic cells (DC) with T cells, immature DC (imDC), mature DC (mDC), T cells, and their cocultures were infected with different HIV-1 isolates. The macrophage-tropic HIV-1 isolate Ba-L allowed viral replication in both imDC and mDC, whereas the T-cell-line-tropic primary isolate PI21 replicated in mDC only. By a virus capture assay, HIV-1 was shown to carry a T-cell- or DC-specific cell surface pattern after production by T cells or DC, respectively. Upon cocultivation of HIV-1-pulsed DC with T cells, HIV-1 exclusively displayed a typical T-cell pattern. Additionally, functional analysis revealed that HIV-1 released from imDC–T-cell cocultures was more infectious than HIV-1 derived from mDC–T-cell cocultures and from cultures of DC, T cells, or peripheral blood mononuclear cells alone. Therefore, we conclude that the interaction of HIV-1-pulsed imDC with T cells in vivo might generate highly infectious virus which primarily originates from T cells.


2004 ◽  
Vol 78 (18) ◽  
pp. 9763-9772 ◽  
Author(s):  
Laura Fantuzzi ◽  
Cristina Purificato ◽  
Karim Donato ◽  
Filippo Belardelli ◽  
Sandra Gessani

ABSTRACT Dendritic cells (DCs) play a crucial role in bridging innate and acquired immune responses to pathogens. In human immunodeficiency virus type 1 (HIV-1) infection, immature DCs (iDCs) are also main targets for HIV-1 at the mucosal level. In this study, we evaluated the effects of HIV-1-DC interactions on the maturation and functional activity of these cells. Exposure of human monocyte-derived iDCs to either aldrithiol-2-inactivated HIV-1 or gp120 led to an upmodulation of activation markers indicative of functional maturation. Despite their phenotype, these cells retained antigen uptake capacity and showed an impaired ability to secrete cytokines or chemokines and to induce T-cell proliferation. Although gp120 did not interfere with DC differentiation, the capacity of these cells to produce interleukin-12 (IL-12) upon maturation was markedly reduced. Likewise, iDCs stimulated by classical maturation factors in the presence of gp120 lacked allostimulatory capacity and did not produce IL-12, in spite of their phenotype typical of activated DCs. Exogenous addition of IL-12 restores the allostimulatory capacity of gp120-exposed DCs. The finding that gp120 induces abnormal maturation of DCs linked to profound suppression of their activities unravels a novel mechanism by which HIV can lead to immune dysfunction in AIDS patients.


2004 ◽  
Vol 78 (10) ◽  
pp. 5223-5232 ◽  
Author(s):  
Jean-François Fonteneau ◽  
Marie Larsson ◽  
Anne-Sophie Beignon ◽  
Kelli McKenna ◽  
Ida Dasilva ◽  
...  

ABSTRACT In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-α/β) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-α and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate naïve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.


Sign in / Sign up

Export Citation Format

Share Document