scholarly journals TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein

2017 ◽  
Vol 91 (9) ◽  
Author(s):  
Xiaojiao Zheng ◽  
Xinlu Wang ◽  
Fan Tu ◽  
Qin Wang ◽  
Zusen Fan ◽  
...  

ABSTRACTZinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated.IMPORTANCEZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated.

2004 ◽  
Vol 78 (23) ◽  
pp. 12781-12787 ◽  
Author(s):  
Xuemin Guo ◽  
John-William N. Carroll ◽  
Margaret R. MacDonald ◽  
Stephen P. Goff ◽  
Guangxia Gao

ABSTRACT The zinc finger antiviral protein (ZAP) is a recently isolated host antiviral factor. It specifically inhibits the replication of Moloney murine leukemia virus (MLV) and Sindbis virus (SIN) by preventing the accumulation of viral RNA in the cytoplasm. For this report, we mapped the viral sequences that are sensitive to ZAP inhibition. The viral sequences were cloned into a luciferase reporter and analyzed for the ability to mediate ZAP-dependent destabilization of the reporter. The sensitive sequence in MLV was mapped to the 3′ long terminal repeat; the sensitive sequences in SIN were mapped to multiple fragments. The fragment of SIN that displayed the highest destabilizing activity was further analyzed by deletion mutagenesis for the minimal sequence that retained the activity. This led to the identification of a fragment of 653 nucleotides. Any further deletion of this fragment resulted in significantly lower activity. We provide evidence that ZAP directly binds to the active but not the inactive fragments. The CCCH zinc finger motifs of ZAP play important roles in RNA binding and antiviral activity. Disruption of the second and fourth zinc fingers abolished ZAP's activity, whereas disruption of the first and third fingers just slightly lowered its activity.


2021 ◽  
Author(s):  
Han Chiu ◽  
Hsin-Ping Chiu ◽  
Han-Pang Yu ◽  
Li-Hsiung Lin ◽  
Zih-Ping Chen ◽  
...  

Zinc-finger protein 36, CCCH type-like 1 (ZFP36L1), containing tandem CCCH-type zinc-finger motifs with an RNA-binding property, plays an important role in cellular RNA metabolism mainly via RNA decay pathways. Recently, we demonstrated that human ZFP36L1 has potent antiviral activity against influenza A virus infection. However, its role in the host defense response against flaviviruses has not been addressed. Here, we demonstrate that ZFP36L1 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L1 reduced JEV and DENV infection, and ZFP36L1 knockdown enhanced viral replication. ZFP36L1 destabilized the JEV genome by targeting and degrading viral RNA mediated by both 5′-3′ XRN1 and 3′-5′ RNA-exosome RNA decay pathways. Mutation in both zinc-finger motifs of ZFP36L1 disrupted RNA-binding and antiviral activity. Furthermore, the viral RNA sequences specifically recognized by ZFP36L1 were mapped to the 3'-untranslated region of the JEV genome with the AU-rich element (AUUUA) motif. We extend the function of ZFP36L1 to host antiviral defense by directly binding and destabilizing the viral genome via recruiting cellular mRNA decay machineries. Importance Cellular RNA-binding proteins are among the first lines of defense against various viruses, particularly RNA viruses. ZFP36L1 belongs to the CCCH-type zinc-finger protein family and has RNA-binding activity; it has been reported to directly bind to the AU-rich elements (AREs) of a subset of cellular mRNAs and then lead to mRNA decay by recruiting mRNA degrading enzymes. However, the antiviral potential of ZFP36L1 against flaviviruses has not yet been fully demonstrated. Here, we reveal the antiviral potential of human ZFP36L1 against Japanese encephalitis virus (JEV) and dengue virus (DENV). ZFP36L1 specifically targeted the ARE motif within viral RNA and triggered the degradation of viral RNA transcripts via cellular degrading enzymes, 5′-3′ XRN1 and 3′-5′ RNA exosome. These findings provide mechanistic insights into how human ZFP36L1 serves as a host antiviral factor to restrict flavivirus replication.


2019 ◽  
Vol 93 (24) ◽  
Author(s):  
Tonya Kueck ◽  
Louis-Marie Bloyet ◽  
Elena Cassella ◽  
Trinity Zang ◽  
Fabian Schmidt ◽  
...  

ABSTRACT Interferons (IFNs) induce the expression of interferon-stimulated genes (ISGs), many of which are responsible for the cellular antiviral state in which the replication of numerous viruses is blocked. How the majority of individual ISGs inhibit the replication of particular viruses is unknown. We conducted a loss-of-function screen to identify genes required for the activity of alpha interferon (IFN-α) against vesicular stomatitis virus, Indiana serotype (VSVIND), a prototype negative-strand RNA virus. Our screen revealed that TRIM69, a member of the tripartite motif (TRIM) family of proteins, is a VSVIND inhibitor. TRIM69 potently inhibited VSVIND replication through a previously undescribed transcriptional inhibition mechanism. Specifically, TRIM69 physically associates with the VSVIND phosphoprotein (P), requiring a specific peptide target sequence encoded therein. P is a cofactor for the viral polymerase and is required for viral RNA synthesis, as well as the assembly of replication compartments. By targeting P, TRIM69 inhibits pioneer transcription of the incoming virion-associated minus-strand RNA, thereby preventing the synthesis of viral mRNAs, and consequently impedes all downstream events in the VSVIND replication cycle. Unlike some TRIM proteins, TRIM69 does not inhibit viral replication by inducing degradation of target viral proteins. Rather, higher-order TRIM69 multimerization is required for its antiviral activity, suggesting that TRIM69 functions by sequestration or anatomical disruption of the viral machinery required for VSVIND RNA synthesis. IMPORTANCE Interferons are important antiviral cytokines that work by inducing hundreds of host genes whose products inhibit the replication of many viruses. While the antiviral activity of interferon has long been known, the identities and mechanisms of action of most interferon-induced antiviral proteins remain to be discovered. We identified gene products that are important for the antiviral activity of interferon against vesicular stomatitis virus (VSV), a model virus that whose genome consists of a single RNA molecule with negative-sense polarity. We found that a particular antiviral protein, TRIM69, functions by a previously undescribed molecular mechanism. Specifically, TRIM69 interacts with and inhibits the function of a particular phosphoprotein (P) component of the viral transcription machinery, preventing the synthesis of viral messenger RNAs.


2006 ◽  
Vol 81 (5) ◽  
pp. 2391-2400 ◽  
Author(s):  
Stefanie Müller ◽  
Peggy Möller ◽  
Matthew J. Bick ◽  
Stephanie Wurr ◽  
Stephan Becker ◽  
...  

ABSTRACT The zinc finger antiviral protein (ZAP) was recently shown to inhibit Moloney murine leukemia virus and Sindbis virus replication. We tested whether ZAP also acts against Ebola virus (EBOV) and Marburg virus (MARV). Antiviral effects were observed after infection of cells expressing the N-terminal part of ZAP fused to the product of the zeocin resistance gene (NZAP-Zeo) as well as after infection of cells inducibly expressing full-length ZAP. EBOV was inhibited by up to 4 log units, whereas MARV was inhibited between 1 to 2 log units. The activity of ZAP was dependent on the integrity of the second and fourth zinc finger motif, as tested with cell lines expressing NZAP-Zeo mutants. Heterologous expression of EBOV- and MARV-specific sequences fused to a reporter gene suggest that ZAP specifically targets L gene sequences. The activity of NZAP-Zeo in this assay was also dependent on the integrity of the second and fourth zinc finger motif. Time-course experiments with infectious EBOV showed that ZAP reduces the level of L mRNA before the level of genomic or antigenomic RNA is affected. Transient expression of ZAP decreased the activity of an EBOV replicon system by up to 95%. This inhibitory effect could be partially compensated for by overexpression of L protein. In conclusion, the data demonstrate that ZAP exhibits antiviral activity against filoviruses, presumably by decreasing the level of viral mRNA.


2011 ◽  
Vol 108 (38) ◽  
pp. 15834-15839 ◽  
Author(s):  
Y. Zhu ◽  
G. Chen ◽  
F. Lv ◽  
X. Wang ◽  
X. Ji ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. e1009545
Author(s):  
Daniel Gonçalves-Carneiro ◽  
Matthew A. Takata ◽  
Heley Ong ◽  
Amanda Shilton ◽  
Paul D. Bieniasz

The human zinc finger antiviral protein (ZAP) recognizes RNA by binding to CpG dinucleotides. Mammalian transcriptomes are CpG-poor, and ZAP may have evolved to exploit this feature to specifically target non-self viral RNA. Phylogenetic analyses reveal that ZAP and its paralogue PARP12 share an ancestral gene that arose prior to extensive eukaryote divergence, and the ZAP lineage diverged from the PARP12 lineage in tetrapods. Notably, the CpG content of modern eukaryote genomes varies widely, and ZAP-like genes arose subsequent to the emergence of CpG-suppression in vertebrates. Human PARP12 exhibited no antiviral activity against wild type and CpG-enriched HIV-1, but ZAP proteins from several tetrapods had antiviral activity when expressed in human cells. In some cases, ZAP antiviral activity required a TRIM25 protein from the same or related species, suggesting functional co-evolution of these genes. Indeed, a hypervariable sequence in the N-terminal domain of ZAP contributed to species-specific TRIM25 dependence in antiviral activity assays. Crosslinking immunoprecipitation coupled with RNA sequencing revealed that ZAP proteins from human, mouse, bat and alligator exhibit a high degree of CpG-specificity, while some avian ZAP proteins appear more promiscuous. Together, these data suggest that the CpG- rich RNA directed antiviral activity of ZAP-related proteins arose in tetrapods, subsequent to the onset of CpG suppression in certain eukaryote lineages, with subsequent species-specific adaptation of cofactor requirements and RNA target specificity.


2019 ◽  
Author(s):  
Tonya Kueck ◽  
Louis-Marie Bloyet ◽  
Elena Cassella ◽  
Trinity Zang ◽  
Fabian Schmidt ◽  
...  

ABSTRACTInterferons (IFNs) induce the expression of many interferon stimulated genes (ISGs), many of which are responsible for the cellular ‘antiviral state’ in which the replication of numerous viruses is blocked. How the majority of individual ISGs inhibit the replication of particular viruses is unknown. We conducted a loss-of-function screen to identify genes required for the activity of IFNαagainst vesicular stomatitis virus, Indiana serotype (VSVIND), a prototype negative strand RNA virus. Our screen revealed that TRIM69, a member of tripartite motif family of proteins, is a VSVINDinhibitor. TRIM69 potently inhibited VSVINDreplication through a previously undescribed transcriptional inhibition mechanism. Specifically, TRIM69 physically associates with the VSVINDphosphoprotein (P), requiring a specific peptide target sequence encoded therein. P is a cofactor for the viral polymerase, and is required for viral RNA synthesis as well as the assembly of replication compartments. By targeting P, TRIM69 inhibits pioneer transcription of the incoming virion-associated minus strand RNA, thereby preventing the synthesis of viral mRNAs, and consequently impedes all downstream events in the VSVINDreplication cycle. Unlike some TRIM proteins, TRIM69 does not inhibit viral replication by inducing degradation of target viral proteins. Rather, higher-order TRIM69 multimerization is required for its antiviral activity, suggesting that TRIM69 functions by sequestration or anatomical disruption of the viral machinery required for VSVINDRNA synthesis.SIGNIFICANCE STATEMENTInterferons are important antiviral cytokines that work by inducing hundreds of host genes whose products inhibit replication of many viruses. While the antiviral activity of interferon has long been known, the identities and mechanisms of action of most interferon-induced antiviral proteins remain to be discovered. We identified gene products that are important for the antiviral activity of interferon against vesicular stomatitis virus (VSV) a model virus that whose genome consists a single RNA molecule with negative sense polarity. We found that a particular antiviral protein, TRIM69, functions by a previously undescribed molecular mechanism. Specifically, TRIM69 interacts with, and inhibits the function, of a particular phosphoprotein (P) component the viral transcription machinery, preventing the synthesis of viral messenger RNAs.


2021 ◽  
Author(s):  
María José Lista ◽  
Rui Pedro Galão ◽  
Mattia Ficarelli ◽  
Dorota Kmiec ◽  
Harry Wilson ◽  
...  

The zinc finger antiviral protein (ZAP) restricts a broad range of viruses by binding CpG dinucleotides in viral RNA to target it for degradation and inhibit its translation. KHNYN was recently identified as an antiviral protein required for ZAP to inhibit retroviral replication, though little is known about its functional determinants. KHNYN contains an N-terminal extended di-KH-like domain, a PIN endoribonuclease domain and a C-terminal CUBAN domain that binds NEDD8 and ubiquitin. We show that deletion of the extended di-KH domain reduces its antiviral activity. However, despite its similarity to RNA binding KH domains, the extended di-KH domain in KHNYN does not appear to bind RNA. Mutation of residues in the CUBAN domain that bind NEDD8 increase KHNYN abundance but do not alter its antiviral activity, suggesting that this interaction regulates KHNYN homeostatic turnover. In contrast, a CRM1-dependent nuclear export signal (NES) at the C-terminus of the CUBAN domain is required for antiviral activity. Deletion of this signal retains KHNYN in the nucleus and inhibits its interaction with ZAP. Interestingly, this NES appeared in the KHNYN lineage at a similar time as when ZAP evolved in tetrapods, indicating that these proteins may have co-evolved to restrict viral replication.


Sign in / Sign up

Export Citation Format

Share Document