scholarly journals Kaposi's Sarcoma-Associated Herpesvirus ORF54/dUTPase Downregulates a Ligand for the NK Activating Receptor NKp44

2012 ◽  
Vol 86 (16) ◽  
pp. 8693-8704 ◽  
Author(s):  
Alexis Spain Madrid ◽  
Don Ganem

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes long-term latent infection in humans and can cause cancers in endothelial and B cells. A functioning immune system is vital for restricting viral proliferation and preventing KSHV-dependent neoplasms. While natural killer (NK) lymphocytes are known to target virus-infected cells for destruction, their importance in the anti-KSHV immune response is not currently understood. Activating receptors on NK cells recognize ligands on target cells, including the uncharacterized ligand(s) for NKp44, termed NKp44L. Here we demonstrate that several NK ligands are affected when KSHV-infected cells are induced to enter the lytic program. We performed a screen of most of the known KSHV genes and found that the product of the ORF54 gene could downregulate NKp44L. The ORF54-encoded protein is a dUTPase; however, dUTPase activity is neither necessary nor sufficient for the downregulation of NKp44L. In addition, we find that ORF54 can also target proteins of the cytokine receptor family and the mechanism of downregulation involves perturbation of membrane protein trafficking. The ORF54-related proteins of other human herpesviruses do not possess this activity, suggesting that the KSHV homolog has evolved a novel immunoregulatory function and that the NKp44-NKp44L signaling pathway contributes to antiviral immunity.

2014 ◽  
Vol 89 (6) ◽  
pp. 3093-3111 ◽  
Author(s):  
Pravinkumar Purushothaman ◽  
Suhani Thakker ◽  
Subhash C. Verma

ABSTRACTKaposi's sarcoma-associated herpesvirus (KSHV) infects many target cells (e.g., endothelial, epithelial, and B cells, keratinocytes, and monocytes) to establish lifelong latent infections. Viral latent-protein expression is critical in inducing and maintaining KSHV latency. Infected cells are programmed to retain the incoming viral genomes during primary infection. Immediately after infection, KSHV transcribes many lytic genes that modulate various cellular pathways to establish successful infection. Analysis of the virion particle showed that the virions contain viral mRNAs, microRNAs, and other noncoding RNAs that are transduced into the target cells during infection, but their biological functions are largely unknown. We performed a comprehensive analysis of the KSHV virion packaged transcripts and the profiles of viral genes transcribed afterde novoinfections of various cell types (human peripheral blood mononuclear cells [PBMCs], CD14+monocytes, and telomerase-immortalized vascular endothelial [TIVE] cells), from viral entry until latency establishment. A next-generation sequence analysis of the total transcriptome showed that several viral RNAs (polyadenylated nuclear RNA, open reading frame 58 [ORF58], ORF59, T0.7, and ORF17) were abundantly present in the KSHV virions and effectively transduced into the target cells. Analysis of the transcription profiles of each viral gene showed specific expression patterns in different cell lines, with the majority of the genes, other than latent genes, silencing after 24 h postinfection. We differentiated the actively transcribing genes from the virion-transduced transcripts using a nascent RNA capture approach (Click-iT chemistry), which identified transcription of a number of viral genes during primary infection. Treating the infected cells with phosphonoacetic acid (PAA) to block the activity of viral DNA polymerase confirmed the involvement of lytic DNA replication during primary infection. To further understand the role of DNA replication during primary infection, we performedde novoPBMC infections with a recombinant ORF59-deleted KSHV virus, which showed significantly reduced numbers of viral copies in the latently infected cells. In summary, the transduced KSHV RNAs as well as the actively transcribed genes control critical processes of early infection to establish KSHV latency.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple human malignancies in immunocompromised individuals. KSHV establishes a lifelong latency in the infected host, during which only a limited number of viral genes are expressed. However, a fraction of latently infected cells undergo spontaneous reactivation to produce virions that infect the surrounding cells. These newly infected cells are primed early to retain the incoming viral genome and induce cell growth. KSHV transcribes a variety of lytic proteins duringde novoinfections that modulate various cellular pathways to establish the latent infection. Interestingly, a large number of viral proteins and RNA are encapsidated in the infectious virions and transduced into the infected cells during ade novoinfection. This study determined the kinetics of the viral gene expression duringde novoKSHV infections and the functional role of the incoming viral transcripts in establishing latency.


2005 ◽  
Vol 79 (17) ◽  
pp. 10952-10967 ◽  
Author(s):  
Harinivas H. Krishnan ◽  
Neelam Sharma-Walia ◽  
Ling Zeng ◽  
Shou-Jiang Gao ◽  
Bala Chandran

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) envelope glycoprotein gB interacts with cell surface heparan sulfate (HS) and α3β1 integrin and plays roles in the initial binding and entry into the target cells and in the induction of preexisting host cell signal pathways. To define gB function further, using a bacterial artificial chromosome (BAC) system carrying the KSHV genome (BAC36wt-KSHV), we constructed a recombinant virus genome with the gB open reading frame (ORF) deleted by replacing a 2-kb gB ORF with a 1.3-kb Kanr gene. Stable 293T cells carrying BAC36wt-KSHV and ΔgBBAC36-KSHV genomes were generated. Transcript analyses and immunoprecipitation reactions confirmed the absence of gB in the 293T-ΔgBBAC36 cells. When monolayers of 293T-BAC36wt and 293T-ΔgBBAC36 cells were induced with tetradecanoylphorbol-13-acetate, infectious virus was detected only from the 293T-BAC36wt cell supernatants. No significant amount of DNase I-resistant viral DNA was detected in the supernatants of 293T-ΔgBBAC36 cells. BAC36wt-KSHV infected the target cells, and in contrast, no viral DNA and transcripts could be detected in cells infected with ΔgBBAC36-KSHV. Electron microscopy of 293T-ΔgBBAC36 cells revealed capsids in the nuclei, cytoplasmic vesicles with core-containing capsids, and occasional enveloped virions in the cytoplasm. However, enveloped virus particles were observed in the extracellular compartments of 293T-BAC36wt cells only and not in 293T-ΔgBBAC36 cells. Transfection of 293T-ΔgBBAC36 cells with plasmid expressing full-length gB restored the recovery of infectious KSHV in the supernatant. These results suggest that, besides its role in virus binding and entry into the target cells, KSHV gB also plays a role in the maturation and egress of virus from the infected cells.


2015 ◽  
Vol 89 (20) ◽  
pp. 10206-10218 ◽  
Author(s):  
Zhiguo Sun ◽  
Hem Chandra Jha ◽  
Erle S. Robertson

ABSTRACTLatent DNA replication of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates at the terminal repeat (TR) element and requirestrans-acting elements, both viral and cellular, such as ORCs, MCMs, and latency-associated nuclear antigen (LANA). However, how cellular proteins are recruited to the viral genome is not very clear. Here, we demonstrated that the host cellular protein, Bub1, is involved in KSHV latent DNA replication. We show that Bub1 constitutively interacts with proliferating cell nuclear antigen (PCNA) via a highly conserved PIP box motif within the kinase domain. Furthermore, we demonstrated that Bub1 can form a complex with LANA and PCNA in KSHV-positive cells. This strongly indicated that Bub1 serves as a scaffold or molecular bridge between LANA and PCNA. LANA recruited PCNA to the KSHV genome via Bub1 to initiate viral replication in S phase and interacted with PCNA to promote its monoubiquitination in response to UV-induced damage for translesion DNA synthesis. This resulted in increased survival of KSHV-infected cells.IMPORTANCEDuring latency in KSHV-infected cells, the viral episomal DNA replicates once each cell cycle. KSHV does not express DNA replication proteins during latency. Instead, KSHV LANA recruits the host cell DNA replication machinery to the replication origin. However, the mechanism by which LANA mediates replication is uncertain. Here, we show that LANA is able to form a complex with PCNA, a critical protein for viral DNA replication. Furthermore, our findings suggest that Bub1, a spindle checkpoint protein, serves as a scaffold or molecular bridge between LANA and PCNA. Our data further support a role for Bub1 and LANA in PCNA-mediated cellular DNA replication processes as well as monoubiquitination of PCNA in response to UV damage. These data reveal a therapeutic target for inhibition of KSHV persistence in malignant cells.


2009 ◽  
Vol 83 (14) ◽  
pp. 7129-7141 ◽  
Author(s):  
Jie Lu ◽  
Subhash C. Verma ◽  
Masanao Murakami ◽  
Qiliang Cai ◽  
Pankaj Kumar ◽  
...  

ABSTRACT Survivin is a master regulator of cell proliferation and cell viability and is highly expressed in most human tumors. The molecular network linked to survivin expression in tumors has not been completely elucidated. In this study, we show that latency-associated nuclear antigen (LANA), a multifunctional protein of Kaposi's sarcoma-associated herpesvirus (KSHV) that is found in Kaposi's sarcoma tumors, upregulates survivin expression and increases the proliferation of KSHV-infected B cells. Analysis of pathway-specific gene arrays showed that survivin expression was highly upregulated in BJAB cells expressing LANA. The mRNA levels of survivin were also upregulated in HEK 293 and BJAB cells expressing LANA. Similarly, protein levels of survivin were significantly higher in LANA-expressing, as well as KSHV-infected, cells. Survivin promoter activity assays identified GC/Sp1 and p53 cis-acting elements within the core promoter region as being important for LANA activity. Gel mobility shift assays revealed that LANA forms a complex with Sp1 or Sp1-like proteins bound to the GC/Sp1 box of the survivin promoter. In addition, a LANA/p53 complex bound to the p53 cis-acting element within the survivin promoter, indicating that upregulation of survivin expression can also occur through suppression of p53 function. Furthermore, immunohistochemistry analyses revealed that survivin expression was upregulated in KSHV-associated Kaposi's sarcoma tissue, suggesting that LANA plays an important role in the upregulation of survivin expression in KSHV-infected endothelial cells. Knockdown of survivin expression by lentivirus-delivered small hairpin RNA resulted in loss of cell proliferation in KSHV-infected cells. Therefore, upregulation of survivin expression in KSHV-associated human cells contributes to their proliferation.


2009 ◽  
Vol 84 (5) ◽  
pp. 2188-2199 ◽  
Author(s):  
Bala Chandran

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV), the most recently identified member of the herpesvirus family, infects a variety of target cells in vitro and in vivo. This minireview surveys current information on the early events of KSHV infection, including virus-receptor interactions, involved envelope glycoproteins, mode of entry, intracellular trafficking, and initial viral and host gene expression programs. We describe data supporting the hypothesis that KSHV manipulates preexisting host cell signaling pathways to allow successful infection. The various signaling events triggered by infection, and their potential roles in the different stages of infection and disease pathogenesis, are summarized.


2009 ◽  
Vol 83 (23) ◽  
pp. 12215-12228 ◽  
Author(s):  
Jennifer L. Baltz ◽  
David J. Filman ◽  
Mihai Ciustea ◽  
Janice Elaine Y. Silverman ◽  
Catherine L. Lautenschlager ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 Å. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.


2006 ◽  
Vol 80 (3) ◽  
pp. 1167-1180 ◽  
Author(s):  
Harinivas H. Krishnan ◽  
Neelam Sharma-Walia ◽  
Daniel N. Streblow ◽  
Pramod P. Naranatt ◽  
Bala Chandran

ABSTRACT Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) interacts with cell surface α3β1 integrin early during in vitro infection of human endothelial cells and fibroblasts and activates the focal adhesion kinase (FAK) that is immediately downstream in the outside-in signaling pathway by integrins, leading to the activation of several downstream signaling molecules. In this study, using real-time DNA and reverse transcription-PCR assays to measure total internalized viral DNA, viral DNA associated with infected nuclei, and viral gene expression, we examined the stage of infection at which FAK plays the most significant role. Early during KSHV infection, FAK was phosphorylated in FAK-positive Du17 mouse embryonic fibroblasts. The absence of FAK in Du3 (FAK−/−) cells resulted in about 70% reduction in the internalization of viral DNA, suggesting that FAK plays a role in KSHV entry. Expression of FAK in Du3 (FAK−/−) cells via an adenovirus vector augmented the internalization of viral DNA. Expression of the FAK dominant-negative mutant FAK-related nonkinase (FRNK) in Du17 cells significantly reduced the entry of virus. Virus entry in Du3 cells, albeit in reduced quantity, delivery of viral DNA to the infected cell nuclei, and expression of KSHV genes suggested that in the absence of FAK, another molecule(s) may be partially compensating for FAK function. Infection of Du3 cells induced the phosphorylation of the FAK-related proline-rich tyrosine kinase (Pyk2) molecule, which has been shown to complement some of the functions of FAK. Expression of an autophosphorylation site mutant of Pyk2 in which Y402 is mutated to F (F402 Pyk2) reduced viral entry in Du3 cells, suggesting that Pyk2 facilitates viral entry moderately in the absence of FAK. These results suggest a critical role for KSHV infection-induced FAK in the internalization of viral DNA into target cells.


2000 ◽  
Vol 74 (8) ◽  
pp. 3586-3597 ◽  
Author(s):  
Jessica R. Kirshner ◽  
David M. Lukac ◽  
Jean Chang ◽  
Don Ganem

ABSTRACT Open reading frame (ORF) 57 of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a homolog of known posttranscriptional regulators that are essential for replication in other herpesviruses. Here, we examined the expression of this gene and the function(s) of its product. KSHV ORF 57 is expressed very early in infection from a 1.6-kb spliced RNA bearing several in-frame initiation codons. Its product is a nuclear protein that, in transient assays, has little effect on the expression of luciferase reporter genes driven by a variety of KSHV and heterologous promoters. However, ORF 57 protein enhances the accumulation of several viral transcripts, in a manner suggesting posttranscriptional regulation. These transcripts include not only known cytoplasmic mRNAs (e.g., ORF 59) but also a nuclear RNA (nut-1) that lacks coding potential. Finally, ORF 57 protein can also modulate the effects of the ORF 50 gene product, a classical transactivator known to be required for lytic induction. The expression from some (e.g., nut-1) but not all (e.g., tk) ORF 50-responsive promoters can be synergistically enhanced by coexpression of ORF 50 and ORF 57. This effect is not due to upregulation of ORF 50 expression but rather to a posttranslational enhancement of the transcriptional activity of ORF 50. These data indicate that ORF 57 is a powerful pleiotropic effector that can act on several posttranscriptional levels to modulate the expression of viral genes in infected cells.


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001423
Author(s):  
Peter Naniima ◽  
Eleonora Naimo ◽  
Sandra Koch ◽  
Ute Curth ◽  
Khaled R. Alkharsah ◽  
...  

Herpesviruses cause severe diseases particularly in immunocompromised patients. Both genome packaging and release from the capsid require a unique portal channel occupying one of the 12 capsid vertices. Here, we report the 2.6 Å crystal structure of the pentameric pORF19 of the γ-herpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV) resembling the portal cap that seals this portal channel. We also present the structure of its β-herpesviral ortholog, revealing a striking structural similarity to its α- and γ-herpesviral counterparts despite apparent differences in capsid association. We demonstrate pORF19 pentamer formation in solution and provide insights into how pentamerization is triggered in infected cells. Mutagenesis in its lateral interfaces blocked pORF19 pentamerization and severely affected KSHV capsid assembly and production of infectious progeny. Our results pave the way to better understand the role of pORF19 in capsid assembly and identify a potential novel drug target for the treatment of herpesvirus-induced diseases.


Sign in / Sign up

Export Citation Format

Share Document