scholarly journals Characterization of Low-Pathogenic H5 Subtype Influenza Viruses from Eurasia: Implications for the Origin of Highly Pathogenic H5N1 Viruses

2007 ◽  
Vol 81 (14) ◽  
pp. 7529-7539 ◽  
Author(s):  
L. Duan ◽  
L. Campitelli ◽  
X. H. Fan ◽  
Y. H. C. Leung ◽  
D. Vijaykrishna ◽  
...  

ABSTRACT Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.

2019 ◽  
Vol 63 (3) ◽  
pp. 66-71
Author(s):  
R. Suu-Ire ◽  
J. Awuni ◽  
P. Benia ◽  
G. Kia

Abstract Highly pathogenic avian influenza (AI) disease has occurred in many countries globally adversely affecting domestic poultry production. Ghana recorded her first outbreak of a highly pathogenic avian influenza (HPAI) in 2007 on a small scale commercial farm in Tema. Since then, there have been numerous outbreaks. The source of these outbreaks is not conclusive. The role of wild birds in the epidemiology of avian influenza outbreaks in Ghana is not known. This study sought to investigate the role of wild birds in the outbreaks of Highly Pathogenic Avian Influenza (HPAI H5N1) in Ghana, particularly in Southern Ghana. Wild birds were trapped and sampled through mist netting. The faecal and tracheal samples were analysed using a One-Step Real Time Reverse Transcription Polymerase Chain reaction (RT-PCR) with primer sets targeting the matrix protein gene of the Avian influenza virus. Sera samples were subjected to multispecies competitive Enzyme Linked Immunosorbent Assay (ELISA) for anti-AI virus antibodies. Three hundred and twenty two (322) wild birds were trapped and sampled. Birds sampled included 87.3 % (281/322) resident birds and 12.7 % (41/322) migratory birds. The migratory birds included intra-African migrants 12.2 % (5/41) and Pale-arctic migrants 87.8 % (36/41). Avian influenza virus and antibody were neither detected in these swabs nor sera samples, respectively. The study documented the absence of AI in resident and migrant wild birds in the study area and suggest that wild birds may not be responsible for the outbreaks of AI in the poultry. However, sustained surveillance is recommended to ascertain a nationwide successful prevention and control strategy to stay the tide of any future intruding AI outbreaks.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 212
Author(s):  
Josanne H. Verhagen ◽  
Ron A. M. Fouchier ◽  
Nicola Lewis

Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks—in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996—have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.


2019 ◽  
Vol 7 ◽  
pp. 251513551882162 ◽  
Author(s):  
Ivette A. Nuñez ◽  
Ted M. Ross

Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.


2019 ◽  
Vol 4 (4) ◽  
pp. 138 ◽  
Author(s):  
Chowdhury ◽  
Hossain ◽  
Ghosh ◽  
Ghosh ◽  
Hossain ◽  
...  

Highly pathogenic avian influenza (HPAI) H5N1 has caused severe illnesses in poultry and in humans. More than 15,000 outbreaks in domestic birds from 2005 to 2018 and 861 human cases from 2003 to 2019 were reported across the world to OIE (Office International des Epizooties) and WHO (World Health Organization), respectively. We reviewed and summarized the spatial and temporal distribution of HPAI outbreaks in South Asia. During January 2006 to June 2019, a total of 1063 H5N1 outbreaks in birds and 12 human cases for H5N1 infection were reported to OIE and WHO, respectively. H5N1 outbreaks were detected more in the winter season than the summer season (RR 5.11, 95% CI: 4.28–6.1). Commercial poultry were three times more likely to be infected with H5N1 than backyard poultry (RR 3.47, 95% CI: 2.99–4.01). The highest number of H5N1 outbreaks was reported in 2008, and the smallest numbers were reported in 2014 and 2015. Multiple subtypes of avian influenza viruses and multiple clades of H5N1 virus were detected. Early detection and reporting of HPAI viruses are needed to control and eliminate HPAI in South Asia.


2017 ◽  
Vol 23 (6) ◽  
pp. 1048-1051 ◽  
Author(s):  
Abdullah A. Selim ◽  
Ahmed M. Erfan ◽  
Naglaa Hagag ◽  
Ali Zanaty ◽  
Abdel-Hafez Samir ◽  
...  

Author(s):  
V. Yu. Marchenko ◽  
N. I. Goncharova ◽  
Thi Nhai Tran ◽  
Khac Sau Trinh ◽  
Ngoc Quyen Nguyen ◽  
...  

This review describes the current situation on highly pathogenic avian influenza virus in 2019 and predicts the possible further spread of avian influenza in Russia. In 2019 outbreaks were reported among wild birds and poultry, as well as human infections with influenza viruses of the subtypes H5Nx, H7N9 and H9N2 in several countries. In 2019, only two outbreaks of highly pathogenic avian influenza H5N8 in Russia occurred. Both outbreaks were recorded in January at poultry farm in the Rostov Region. In addition, in May 2019 avian influenza virus of H14N7 subtype was isolated from a wild bird during the avian influenza virus surveillance in Tomsk Region. In June 2019, a strain of H13N2 subtype was isolated in the territory of Kamchatka Region, then, in August 2019, an influenza virus of H13N6 subtype was isolated in the Saratov Region. It was revealed that some strains of avian influenza virus isolated in Russia have a high degree of identity with strains circulating in South-East Asia. This was shown by the phylogenetic analysis of A/ H5Nx influenza viruses previously isolated in the Saratov Region and the Socialist Republic of Vietnam during the avian influenza virus surveillance. Thus, it was demonstrated again that the territory of Russia plays a key geographical role in the global spread of avian influenza virus.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 591
Author(s):  
Yunyueng Jang ◽  
Sang Heui Seo

Ducks show notably higher resistance to highly pathogenic avian influenza viruses as compared to chickens. Here, we studied the age-dependent susceptibility in ducks to the infections caused by highly pathogenic avian influenza viruses. We intranasally infected ducks aged 1, 2, 4, and 8 weeks with highly pathogenic H5N6 avian influenza viruses isolated in South Korea in 2016. All the 1-and 2-week-old ducks died after infection, 20% of 3-week-old ducks died, and from the ducks aged 4 and 8 weeks, all of them survived. We performed microarray analysis and quantitative real-time PCR using total RNA isolated from the lungs of infected 2- and 4-week-old ducks to determine the mechanism underlying the age-dependent susceptibility to highly pathogenic avian influenza virus. Limited genes were found to be differentially expressed between the lungs of 2- and 4-week-old ducks. Cell damage-related genes, such as CIDEA and ND2, and the immune response-related gene NR4A3 were notably induced in the lungs of infected 2-week-old ducks compared to those in the lungs of infected 4-week-old ducks.


Sign in / Sign up

Export Citation Format

Share Document