scholarly journals Human Cytomegalovirus Infection Dysregulates the Localization and Stability of NICD1 and Jag1 in Neural Progenitor Cells

2015 ◽  
Vol 89 (13) ◽  
pp. 6792-6804 ◽  
Author(s):  
Xiao-Jun Li ◽  
Xi-Juan Liu ◽  
Bo Yang ◽  
Ya-Ru Fu ◽  
Fei Zhao ◽  
...  

ABSTRACTHuman cytomegalovirus (HCMV) infection of the developing fetus frequently results in major neural developmental damage. In previous studies, HCMV was shown to downregulate neural progenitor/stem cell (NPC) markers and induce abnormal differentiation. As Notch signaling plays a vital role in the maintenance of stem cell status and is a switch that governs NPC differentiation, the effect of HCMV infection on the Notch signaling pathway in NPCs was investigated. HCMV downregulated mRNA levels of Notch1 and its ligand, Jag1, and reduced protein levels and altered the intracellular localization of Jag1 and the intracellular effector form of Notch1, NICD1. These effects required HCMV gene expression and appeared to be mediated through enhanced proteasomal degradation. Transient expression of the viral tegument proteins of pp71 and UL26 reduced NICD1 and Jag1 protein levels endogenously and exogenously. Given the critical role of Notch signaling in NPC growth and differentiation, these findings reveal important mechanisms by which HCMV disturbs neural cell developmentin vitro. Similar eventsin vivomay be associated with HCMV-mediated neuropathogenesis during congenital infection in the fetal brain.IMPORTANCECongenital human cytomegalovirus (HCMV) infection is the leading cause of birth defects that primarily manifest as neurological disabilities. Neural progenitor cells (NPCs), key players in fetal brain development, are the most susceptible cell type for HCMV infection in the fetal brain. Studies have shown that NPCs are fully permissive for HCMV infection, which causes neural cell loss and premature differentiation, thereby perturbing NPC fate. Elucidation of virus-host interactions that govern NPC proliferation and differentiation is critical to understanding neuropathogenesis. The Notch signaling pathway is critical for maintaining stem cell status and functions as a switch for differentiation of NPCs. Our investigation into the impact of HCMV infection on this pathway revealed that HCMV dysregulates Notch signaling by altering expression of the Notch ligand Jag1, Notch1, and its active effector in NPCs. These results suggest a mechanism for the neuropathogenesis induced by HCMV infection that includes altered NPC differentiation and proliferation.

2017 ◽  
Vol 91 (17) ◽  
Author(s):  
Dasol Han ◽  
Sung-Hyun Byun ◽  
Juwan Kim ◽  
Mookwang Kwon ◽  
Samuel J. Pleasure ◽  
...  

ABSTRACT Despite the high incidence of severe defects in the central nervous system caused by human cytomegalovirus (HCMV) congenital infection, the mechanism of HCMV neuropathogenesis and the roles of individual viral genes have not yet been fully determined. In this study, we show that the immediate-early 2 (IE2) protein may play a key role in HCMV-caused neurodevelopmental disorders. IE2-transduced neural progenitor cells gave rise to neurospheres with a lower frequency and produced smaller neurospheres than control cells in vitro, indicating reduction of self-renewal and expansion of neural progenitors by IE2. At 2 days after in utero electroporation into the ventricle of the developing brain, a dramatically lower percentage of IE2-expressing cells was detected in the ventricular zone (VZ) and cortical plate (CP) compared to control cells, suggesting that IE2 concurrently dysregulates neural stem cell maintenance in the VZ and neuronal migration to the CP. In addition, most IE2+ cells in the lower intermediate zone either showed multipolar morphology with short neurites or possessed nonradially oriented processes, whereas control cells had long, radially oriented monopolar or bipolar neurites. IE2+ callosal axons also failed to cross the midline to form the corpus callosum. Furthermore, we provide molecular evidence that the cell cycle arrest and DNA binding activities of IE2 appear to be responsible for the increased neural stem cell exit from the VZ and cortical migrational defects, respectively. Collectively, our results demonstrate that IE2 disrupts the orderly process of brain development in a stepwise manner to further our understanding of neurodevelopmental HCMV pathogenesis. IMPORTANCE HCMV brain pathogenesis has been studied in limited experimental settings, such as in vitro HCMV infection of neural progenitor cells or in vivo murine CMV infection of the mouse brain. Here, we show that IE2 is a pivotal factor that contributes to HCMV-induced abnormalities in the context of the embryonic brain using an in utero gene transfer tool. Surprisingly, IE2, but not HCMV IE1 or murine CMV ie3, interferes pleiotropically with key neurodevelopmental processes, including neural stem cell regulation, proper positioning of migrating neurons, and the callosal axon projections important for communication between the hemispheres. Our data suggest that the wide spectrum of clinical outcomes, ranging from mental retardation to microcephaly, caused by congenital HCMV infection can be sufficiently explained in terms of IE2 action alone.


2008 ◽  
Vol 82 (20) ◽  
pp. 9994-10007 ◽  
Author(s):  
Min Hua Luo ◽  
Philip H. Schwartz ◽  
Elizabeth A. Fortunato

ABSTRACT Congenital human cytomegalovirus (HCMV) infection causes central nervous system structural abnormalities and functional disorders, affecting both astroglia and neurons with a pathogenesis that is only marginally understood. To better understand HCMV's interactions with such clinically important cell types, we utilized neural progenitor cells (NPCs) derived from neonatal autopsy tissue, which can be differentiated down either glial or neuronal pathways. Studies were performed using two viral isolates, Towne (laboratory adapted) and TR (a clinical strain), at a multiplicity of infection of 3. NPCs were fully permissive for both strains, expressing the full range of viral antigens (Ags) and producing relatively large numbers of infectious virions. NPCs infected with TR showed delayed development of cytopathic effects (CPE) and replication centers and shed less virus. This pattern of delay for TR infections held true for all cell types tested. Differentiation of NPCs was carried out for 21 days to obtain either astroglia (>95% GFAP+) or a 1:5 mixed neuron/astroglia population (β-tubulin III+/GFAP+). We found that both of these differentiated populations were fully permissive for HCMV infection and produced substantial numbers of infectious virions. Utilizing a difference in plating efficiencies, we were able to enrich the neuron population to ∼80% β-tubulin III+ cells. These β-tubulin III+-enriched populations remained fully permissive for infection but were very slow to develop CPE. These infected enriched neurons survived longer than either NPCs or astroglia, and a small proportion were alive until at least 14 days postinfection. These surviving cells were all β-tubulin III+ and showed viral Ag expression. Surprisingly, some cells still exhibited extended processes, similar to mock-infected neurons. Our findings strongly suggest neurons as reservoirs for HCMV within the developing brain.


2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Cong-Cong Wu ◽  
Xuan Jiang ◽  
Xian-Zhang Wang ◽  
Xi-Juan Liu ◽  
Xiao-Jun Li ◽  
...  

ABSTRACT The mechanisms underlying neurodevelopmental damage caused by virus infections remain poorly defined. Congenital human cytomegalovirus (HCMV) infection is the leading cause of fetal brain development disorders. Previous work has linked HCMV infection to perturbations of neural cell fate, including premature differentiation of neural progenitor cells (NPCs). Here, we show that HCMV infection of NPCs results in loss of the SOX2 protein, a key pluripotency-associated transcription factor. SOX2 depletion maps to the HCMV major immediate early (IE) transcription unit and is individually mediated by the IE1 and IE2 proteins. IE1 causes SOX2 downregulation by promoting the nuclear accumulation and inhibiting the phosphorylation of STAT3, a transcriptional activator of SOX2 expression. Deranged signaling resulting in depletion of a critical stem cell protein is an unanticipated mechanism by which the viral major IE proteins may contribute to brain development disorders caused by congenital HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) infections are a leading cause of brain damage, hearing loss, and other neurological disabilities in children. We report that the HCMV proteins known as IE1 and IE2 target expression of human SOX2, a central pluripotency-associated transcription factor that governs neural progenitor cell (NPC) fate and is required for normal brain development. Both during HCMV infection and when expressed alone, IE1 causes the loss of SOX2 from NPCs. IE1 mediates SOX2 depletion by targeting STAT3, a critical upstream regulator of SOX2 expression. Our findings reveal an unanticipated mechanism by which a common virus may cause damage to the developing nervous system and suggest novel targets for medical intervention.


2018 ◽  
Author(s):  
Cong-Cong Wu ◽  
Xuan Jiang ◽  
Xian-Zhang Wang ◽  
Xi-Juan Liu ◽  
Xiao-Jun Li ◽  
...  

ABSTRACTThe mechanisms underlying neurodevelopmental damage caused by virus infections remain poorly defined. Congenital human cytomegalovirus (HCMV) infection is the leading cause of fetal brain development disorders. Previous work has linked HCMV to perturbations of neural cell fate, including premature differentiation of neural progenitor cells (NPCs). Here we show that HCMV infection of NPCs results in the loss of the SOX2 protein, a key pluripotency-associated transcription factor. SOX2 depletion maps to the HCMV major immediate-early (IE) transcription unit and is individually mediated by the IE1 and IE2 proteins. IE1 causes SOX2 down-regulation by promoting the nuclear accumulation and inhibiting the phosphorylation of STAT3, a transcriptional activator of SOX2 expression. Deranged signaling resulting in depletion of a critical stem cell protein is an unanticipated mechanism by which the viral major IE proteins may contribute to brain development disorders caused by congenital HCMV infection.IMPORTANCEHuman cytomegalovirus (HCMV) infections are a leading cause of brain damage, hearing loss and other neurological disabilities in children. We report that the HCMV proteins known as IE1 and IE2 target expression of human SOX2, a central pluripotency-associated transcription factor that governs neural progenitor cell (NPC) fate and is required for normal brain development. Both during HCMV infection and when expressed alone, IE1 causes the loss of SOX2 from NPCs. IE1 mediates SOX2 depletion by targeting STAT3, a critical upstream regulator of SOX2 expression. Our findings reveal an unanticipated mechanism by which a common virus may cause damage to the developing nervous system and suggest novel targets for medical intervention.


2010 ◽  
Vol 84 (7) ◽  
pp. 3528-3541 ◽  
Author(s):  
Min Hua Luo ◽  
Holger Hannemann ◽  
Amit S. Kulkarni ◽  
Philip H. Schwartz ◽  
John M. O'Dowd ◽  
...  

ABSTRACT Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, largely manifested as central nervous system (CNS) disorders. The principal site of manifestations in the mouse model is the fetal brain's neural progenitor cell (NPC)-rich subventricular zone. Our previous human NPC studies found these cells to be fully permissive for HCMV and a useful in vitro model system. In continuing work, we observed that under culture conditions favoring maintenance of multipotency, infection caused NPCs to quickly and abnormally differentiate. This phenotypic change required active viral transcription. Whole-genome expression analysis found rapid downregulation of genes that maintain multipotency and establish NPCs’ neural identity. Quantitative PCR, Western blot, and immunofluorescence assays confirmed that the mRNA and protein levels of four hallmark NPC proteins (nestin, doublecortin, sex-determining homeobox 2, and glial fibrillary acidic protein) were decreased by HCMV infection. The decreases required active viral replication and were due, at least in part, to proteasomal degradation. Our results suggest that HCMV infection causes in utero CNS defects by inducing both premature and abnormal differentiation of NPCs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takamasa Hirai ◽  
Ken Kono ◽  
Rumi Sawada ◽  
Takuya Kuroda ◽  
Satoshi Yasuda ◽  
...  

AbstractHighly sensitive detection of residual undifferentiated pluripotent stem cells is essential for the quality and safety of cell-processed therapeutic products derived from human induced pluripotent stem cells (hiPSCs). We previously reported the generation of an adenovirus (Ad) vector and adeno-associated virus vectors that possess a suicide gene, inducible Caspase 9 (iCasp9), which makes it possible to sensitively detect undifferentiated hiPSCs in cultures of hiPSC-derived cardiomyocytes. In this study, we investigated whether these vectors also allow for detection of undifferentiated hiPSCs in preparations of hiPSC-derived neural progenitor cells (hiPSC-NPCs), which have been expected to treat neurological disorders. To detect undifferentiated hiPSCs, the expression of pluripotent stem cell markers was determined by immunostaining and flow cytometry. Using immortalized NPCs as a model, the Ad vector was identified to be the most efficient among the vectors tested in detecting undifferentiated hiPSCs. Moreover, we found that the Ad vector killed most hiPSC-NPCs in an iCasp9-dependent manner, enabling flow cytometry to detect undifferentiated hiPSCs intermingled at a lower concentration (0.002%) than reported previously (0.1%). These data indicate that the Ad vector selectively eliminates hiPSC-NPCs, thus allowing for sensitive detection of hiPSCs. This cytotoxic viral vector could contribute to ensuring the quality and safety of hiPSCs-NPCs for therapeutic use.


2012 ◽  
Vol 24 (1) ◽  
pp. 289
Author(s):  
M. A. Rasmussen ◽  
V. J. Hall ◽  
S. G. Petkov ◽  
O. Ujhelly ◽  
M. Pirity ◽  
...  

Human induced pluripotent stem cells (iPSC) and neural progenitor cells (NPC) are envisioned to play a vital role in future cell replacement therapy. In this context, porcine iPSC and NPC would be highly useful for pre-clinical safety testing by autologous transplantation in a porcine biomedical model. The objective of this study was to establish iPSC from porcine epiblast-derived NPC by use of a tetracycline-inducible Tet-ON approach. A total of 1.5 × 105 porcine NPC at passage 6 (Rasmussen et al. 2011) were transduced O/N with 0.5 ml active virus containing the following porcine pluripotency genes: pOCT4 (pO); pOCT4 and pKLF4 (pOK); pOCT4 and pC-MYC (pOM); pOCT4, pC-MYC, and pKLF4 (pOMK) or polycistronic pOCT4, pSOX2, pC-MYC, and pKLF4 (pOSMK); all including 0.25 ml transactivator (rtTA). After 3 days, the cells were trypsinized and passaged to MEF feeder cells and cultured in iPSC medium containing DMEM/F12, 20% KSR, 1% NEAA, 10 μM β-Me, 20 ng mL–1 human bFGF and 2 μg mL–1 doxycycline. On Day 8, tightly packed colonies of cells presenting an embryonic stem cell-like morphology were visible in the pOM, pOMK, and pOSMK combinations. In contrast, colonies were not observed with the pO and pOK combination. On Day 14, several iPSC-like colonies were manually picked and sub-cultured on MEF feeder cells in iPSC medium. Two lines from the pOSMK combination were capable of prolonged clonal propagation while maintaining an ESC-like morphology. However, when doxycycline was removed from the culture medium, growth arrest and spontaneous differentiation occurred. The iPSC-like lines expressed OCT4, SOX2, C-MYC, and KLF4, as evaluated by immunocytochemistry, and expression of NANOG, SSEA-1, and SSEA-4 was also confirmed, demonstrating activation of endogenous pluripotency genes. The iPSC-like lines were capable of forming embryoid bodies (EB) without addition of doxycycline and in vitro differentiation of EB in medium containing DMEM and 15% FCS confirmed the presence of meso- (SMA) and endodermal (AFP) derivatives by immunocytochemistry. Furthermore, co-culture experiments with MS5 stromal cells in medium containing DMEM, 15% KSR, and 150 ng mL–1 human Noggin resulted in differentiation into neuroectoderm (NESTIN and SOX2), as well as more mature neurons (TUJI and GFAP). The latter resulted in establishment of new NPC lines. The system can be used to study mechanisms involved in the early transition from pluripotency to multipotency in the pig and the reversal of the process caused by reprogramming. The Danish Agency for Science, Technology and Innovation, the Danish National Advanced Technology Foundation as well as the EU projects, EU FP7 Stem Cell Project “PartnErS” (218205; 204, 523) and EU FP7 Stem Cell Project “PluriSys” (223485).


Sign in / Sign up

Export Citation Format

Share Document