scholarly journals Mutational Alteration of Human Immunodeficiency Virus Type 1 Vif Allows for Functional Interaction with Nonhuman Primate APOBEC3G

2006 ◽  
Vol 80 (12) ◽  
pp. 5984-5991 ◽  
Author(s):  
Bärbel Schröfelbauer ◽  
Tilo Senger ◽  
Gerard Manning ◽  
Nathaniel R. Landau

ABSTRACT Human APOBEC3F (hA3F) and APOBEC3G (hA3G) are antiretroviral cytidine deaminases that can be encapsidated during virus assembly to catalyze C→U deamination of the viral reverse transcripts in the next round of infection. Lentiviruses such as human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) have evolved the accessory protein Vif to induce their degradation before packaging. HIV type 1 (HIV-1) Vif counteracts hA3G but not rhesus macaque APOBEC3G (rhA3G) or African green monkey (AGM) APOBEC3G (agmA3G) because of a failure to bind the nonhuman primate proteins. The species specificity of the interaction is controlled by amino acid 128, which is aspartate in hA3G and lysine in rhA3G. With the objective of overcoming this species restriction, mutations were introduced into HIV-1 Vif at amino acid positions that differed in charge between HIV-1 Vif and SIV Vif. The mutant proteins were tested for the ability to counteract hA3G, rhA3G, and agmA3G. Alteration of the conserved sequence at positions 14 to 17 from DRMR to SERQ, which is the sequence in AGM Vif, caused HIV-1 Vif to functionally interact with rhA3G and agmA3G. Mutation of three residues to the sequence SEMQ allowed interaction with rhA3G. SEMQ Vif also counteracted D128K mutant hA3G and wild-type hA3G. Introduction of the sequence into an infectious molecular HIV-1 clone allowed the virus to replicate productively in human cells that expressed rhA3G or hA3G. These findings provide insight into the interaction of Vif with A3G and are a step toward the development of a novel primate model for AIDS.

2000 ◽  
Vol 74 (17) ◽  
pp. 7851-7860 ◽  
Author(s):  
Sunee Himathongkham ◽  
Nancy S. Halpin ◽  
Jinling Li ◽  
Michael W. Stout ◽  
Christopher J. Miller ◽  
...  

ABSTRACT The envelope (env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) determines several viral properties (e.g., coreceptor usage, cell tropism, and cytopathicity) and is a major target of antiviral immune responses. Most investigations on env have been conducted on subtype-B viral strains, prevalent in North America and Europe. Our study aimed to analyze env genes of subtype-E viral strains, prevalent in Asia and Africa, with a nonhuman primate model for lentivirus infection and AIDS. To this end, we constructed a simian immunodeficiency virus/HIV-1 subtype-E (SHIV) recombinant clone by replacing the env ectodomain of the SHIV-33 clone with theenv ectodomain from the subtype-E strain HIV-1CAR402, which was isolated from an individual in the Central African Republic. Virus from this recombinant clone, designated SHIV-E-CAR, replicated efficiently in macaque peripheral blood mononuclear cells. Accordingly, juvenile macaques were inoculated with cell-free SHIV-E-CAR by the intravenous or intravaginal route; virus replicated in these animals but did not produce hematological abnormalities. In an attempt to elicit the pathogenic potential of the recombinant clone, we serially passaged this viral clone via transfusion of blood and bone marrow through juvenile macaques to produce SHIV-E-P4 (fourth-passage virus). The serially passaged virus established productive infection and CD4+ T-cell depletion in juvenile macaques inoculated by either the intravenous or the intravaginal route. Determination of the coreceptor usage of SHIV-E-CAR and serially passaged SHIV-E-P4 indicated that both of these viruses utilized CXCR4 as a coreceptor. In summary, the serially passaged SHIV subtype-E chimeric virus will be important for studies aimed at developing a nonhuman primate model for analyzing the functions of subtype-E env genes in viral transmission and pathogenesis and for vaccine challenge experiments with macaques immunized with HIV-1 env antigens.


2001 ◽  
Vol 82 (11) ◽  
pp. 2735-2745 ◽  
Author(s):  
Paola D’Aloja ◽  
Anna Claudia Santarcangelo ◽  
Stefan Arold ◽  
Andreas Baur ◽  
Maurizio Federico

The primary human immunodeficiency virus type 1 (HIV-1) Nef mutant F12-HIVNef is characterized by three rare amino acid substitutions, G140E, V153L and E177G. It was reported previously that the expression of F12-HIVNef in the context of the highly productive NL4-3 HIV-1 strain blocks virus replication at the level of virus assembly and/or release by a mechanism depending on the presence of the CD4 intracytoplasmic tail. Here, it is reported that NL4-3 HIV-1 strains expressing F12-HIVnef alleles that were back-mutated in each amino acid substitution readily replicated in CD4+ cells. Attempting to correlate possible functional alterations with antiviral effects, both F12-HIVNef and its back mutants were tested in terms of well-characterized markers of Nef expression. Both F12-HIVNef and its G177E back mutant did not down-regulate CD4 as the consequence of a greatly reduced rate of CD4 internalization. On the other hand, F12-HIVNef as well as the E140G and L153V back mutants failed to activate the p62 Nef-associated kinase (p62NAK). Thus, only F12-HIVNef was defective in both accelerated rates of CD4 internalization and p62NAK activation, whereas at least one Nef function was restored in all of the back mutants. Infection of cells expressing Nef-resistant CD4 molecules with HIV-1 strains encoding F12-HIVNef back mutants showed that both the lack of accelerated CD4 endocytosis and an, as yet, still unidentified function are required for the F12-HIVNef inhibitory phenotype. These results provide a detailed functional analysis of the F12-HIVnef allele and support the idea that both CD4 accelerated internalization and p62NAK activation are part of the essential steps in the virus replication cycle.


2006 ◽  
Vol 80 (16) ◽  
pp. 7939-7951 ◽  
Author(s):  
Anjali Joshi ◽  
Kunio Nagashima ◽  
Eric O. Freed

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Gag precursor protein Pr55Gag drives the assembly and release of virus-like particles in the infected cell. The capsid (CA) domain of Gag plays an important role in these processes by promoting Gag-Gag interactions during assembly. The C-terminal domain (CTD) of CA contains two dileucine-like motifs (L189/L190 and I201/L202) implicated in regulating the localization of Gag to multivesicular bodies (MVBs). These dileucine-like motifs are located in the vicinity of the CTD dimer interface, a region of CA critical for Gag-Gag interactions during virus assembly and CA-CA interactions during core formation. To study the importance of the CA dileucine-like motifs in various aspects of HIV-1 replication, we introduced a series of mutations into these motifs in the context of a full-length, infectious HIV-1 molecular clone. CA mutants LL189,190AA and IL201,202AA were both severely impaired in virus particle production because of a variety of defects in the binding of Gag to membrane, Gag multimerization, and CA folding. In contrast to the model suggesting that the CA dileucine-like motifs regulate MVB targeting, the IL201,202AA mutation did not alter Gag localization to the MVB in either HeLa cells or macrophages. Revertants of single-amino-acid substitution mutants were obtained that no longer contained dileucine-like motifs but were nevertheless fully replication competent. The varied phenotypes of the mutants reported here provide novel insights into the interplay among Gag multimerization, membrane binding, virus assembly, CA dimerization, particle maturation, and virion infectivity.


1999 ◽  
Vol 73 (1) ◽  
pp. 19-28 ◽  
Author(s):  
David E. Ott ◽  
Elena N. Chertova ◽  
Laura K. Busch ◽  
Lori V. Coren ◽  
Tracy D. Gagliardi ◽  
...  

ABSTRACT The p6Gag protein of human immunodeficiency virus type 1 (HIV-1) is produced as the carboxyl-terminal sequence within the Gag polyprotein. The amino acid composition of this protein is high in hydrophilic and polar residues except for a patch of relatively hydrophobic amino acids found in the carboxyl-terminal 16 amino acids. Internal cleavage of p6Gag between Y36 and P37, apparently by the HIV-1 protease, removes this hydrophobic tail region from approximately 30% of the mature p6Gag proteins in HIV-1MN. To investigate the importance of this cleavage and the hydrophobic nature of this portion of p6Gag, site-directed mutations were made at the minor protease cleavage site and within the hydrophobic tail. The results showed that all of the single-amino-acid-replacement mutants exhibited either reduced or undetectable cleavage at the site yet almost all were nearly as infectious as wild-type virus, demonstrating that processing at this site is not important for viral replication. However, one exception, Y36F, was 300-fold as infectious the wild type. In contrast to the single-substitution mutants, a virus with two substitutions in this region of p6Gag, Y36S-L41P, could not infect susceptible cells. Protein analysis showed that while the processing of the Gag precursor was normal, the double mutant did not incorporate Env into virus particles. This mutant could be complemented with surface glycoproteins from vesicular stomatitis virus and murine leukemia virus, showing that the inability to incorporate Env was the lethal defect for the Y36S-L41P virus. However, this mutant was not rescued by an HIV-1 Env with a truncated gp41TM cytoplasmic domain, showing that it is phenotypically different from the previously described MA mutants that do not incorporate their full-length Env proteins. Cotransfection experiments with Y36S-L41P and wild-type proviral DNAs revealed that the mutant Gag dominantly blocked the incorporation of Env by wild-type Gag. These results show that the Y36S-L41P p6Gag mutation dramatically blocks the incorporation of HIV-1 Env, presumably acting late in assembly and early during budding.


2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


2010 ◽  
Vol 84 (24) ◽  
pp. 12958-12970 ◽  
Author(s):  
Raphaël Vigan ◽  
Stuart J. D. Neil

ABSTRACT Tetherin (BST2/CD317) potently restricts the particle release of human immunodeficiency virus type 1 (HIV-1) mutants defective in the accessory gene vpu. Vpu antagonizes tetherin activity and induces its cell surface downregulation and degradation in a manner dependent on the transmembrane (TM) domains of both proteins. We have carried out extensive mutagenesis of the HIV-1 NL4.3 Vpu TM domain to identify three amino acid positions, A14, W22, and, to a lesser extent, A18, that are required for tetherin antagonism. Despite the mutants localizing indistinguishably from the wild-type (wt) protein and maintaining the ability to multimerize, mutation of these positions rendered Vpu incapable of coimmunoprecipitating tetherin or mediating its cell surface downregulation. Interestingly, these amino acid positions are predicted to form one face of the Vpu transmembrane alpha helix and therefore potentially contribute to an interacting surface with the transmembrane domain of tetherin either directly or by modulating the conformation of Vpu oligomers. While the equivalent of W22 is invariant in HIV-1/SIVcpz Vpu proteins, the positions of A14 and A18 are highly conserved among Vpu alleles from HIV-1 groups M and N, but not those from group O or SIVcpz that lack human tetherin (huTetherin)-antagonizing activity, suggesting that they may have contributed to the adaption of HIV-1 to human tetherin.


2012 ◽  
Vol 56 (5) ◽  
pp. 2581-2589 ◽  
Author(s):  
Paula Ordonez ◽  
Takayuki Hamasaki ◽  
Yohei Isono ◽  
Norikazu Sakakibara ◽  
Masahiro Ikejiri ◽  
...  

ABSTRACTNonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of current combination therapies for human immunodeficiency virus type 1 (HIV-1) infection. In screening of chemical libraries, we found 6-azido-1-benzyl-3-(3,5-dimethylbenzyl)uracil (AzBBU) and 6-amino-1-benzyl-3-(3,5-dimethylbenzyl)uracil (AmBBU) to be highly active and selective inhibitors of HIV-1 replicationin vitro. To determine the resistance profiles of these compounds, we conducted a long-term culture of HIV-1-infected MT-4 cells with escalating concentrations of each compound. After serial passages of the infected cells, escape viruses were obtained, and they were more than 500-fold resistant to the uracil derivatives compared to the wild type. Sequence analysis was conducted for RT of the escape viruses at passages 12 and 24. The amino acid mutation Y181C in the polymerase domain of RT was detected for all escape viruses. Docking studies using the crystal structure of RT showed that AmBBU requires the amino acid residues Leu100, Val106, Tyr181, and Trp229 for exerting its inhibitory effect on HIV-1. Four additional amino acid changes (K451R, R461K, T468P, and D471N) were identified in the RNase H domain of RT; however, their precise role in the acquisition of resistance is still unclear. In conclusion, the initial mutation Y181C seems sufficient for the acquisition of resistance to the uracil derivatives AzBBU and AmBBU. Further studies are required to determine the precise role of each mutation in the acquisition of HIV-1 resistance.


2005 ◽  
Vol 79 (19) ◽  
pp. 12447-12454 ◽  
Author(s):  
M. Mink ◽  
S. M. Mosier ◽  
S. Janumpalli ◽  
D. Davison ◽  
L. Jin ◽  
...  

ABSTRACT Enfuvirtide (ENF), a novel human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, has potent antiviral activity against HIV-1 both in vitro and in vivo. Resistance to ENF observed after in vitro passaging was associated with changes in a three-amino-acid (aa) motif, GIV, at positions 36 to 38 of gp41. Patients with ongoing viral replication while receiving ENF during clinical trials acquired substitutions within gp41 aa 36 to 45 in the first heptad repeat (HR-1) of gp41 in both population-based plasma virus sequences and proviral DNA sequences from isolates showing reduced susceptibilities to ENF. To investigate their impact on ENF susceptibility, substitutions were introduced into a modified pNL4-3 strain by site-directed mutagenesis, and the susceptibilities of mutant viruses and patient-derived isolates to ENF were tested. In general, susceptibility decreases for single substitutions were lower than those for double substitutions, and the levels of ENF resistance seen for clinical isolates were higher than those observed for the site-directed mutant viruses. The mechanism of ENF resistance was explored for a subset of the substitutions by expressing them in the context of a maltose binding protein chimera containing a portion of the gp41 ectodomain and measuring their binding affinity to fluorescein-labeled ENF. Changes in binding affinity for the mutant gp41 fusion proteins correlated with the ENF susceptibilities of viruses containing the same substitutions. The combined results support the key role of gp41 aa 36 to 45 in the development of resistance to ENF and illustrate that additional envelope regions contribute to the ENF susceptibility of fusion inhibitor-naïve viruses and resistance to ENF.


2000 ◽  
Vol 74 (2) ◽  
pp. 693-701 ◽  
Author(s):  
Joseph T. C. Shieh ◽  
Julio Martín ◽  
Gordon Baltuch ◽  
Michael H. Malim ◽  
Francisco González-Scarano

ABSTRACT Microglia are the main reservoir for human immunodeficiency virus type 1 (HIV-1) in the central nervous system (CNS), and multinucleated giant cells, the result of fusion of HIV-1-infected microglia and brain macrophages, are the neuropathologic hallmark of HIV dementia. One potential explanation for the formation of syncytia is viral adaptation for these CD4+ CNS cells. HIV-1BORI-15, a virus adapted to growth in microglia by sequential passage in vitro, mediates high levels of fusion and replicates more efficiently in microglia and monocyte-derived-macrophages than its unpassaged parent (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. Gonzalez-Scarano, J. Virol. 70:7654–7662, 1996). Since the interaction between the viral envelope glycoprotein and CD4 and the chemokine receptor mediates fusion and plays a key role in tropism, we have analyzed the HIV-1BORI-15 env as a fusogen and in recombinant and pseudotyped viruses. Its syncytium-forming phenotype is not the result of a switch in coreceptor use but rather of the HIV-1BORI-15envelope-mediated fusion of CD4+CCR5+ cells with greater efficiency than that of its parental strain, either by itself or in the context of a recombinant virus. Genetic analysis indicated that the syncytium-forming phenotype was due to four discrete amino acid differences in V1/V2, with a single-amino-acid change between the parent and the adapted virus (E153G) responsible for the majority of the effect. Additionally, HIV-1BORI-15 env-pseudotyped viruses were less sensitive to decreases in the levels of CD4 on transfected 293T cells, leading to the hypothesis that the differences in V1/V2 alter the interaction between this envelope and CD4 or CCR5, or both. In sum, the characterization of the envelope of HIV-1BORI-15, a highly fusogenic glycoprotein with genetic determinants in V1/V2, may lead to a better understanding of the relationship between HIV replication and syncytium formation in the CNS and of the importance of this region of gp120 in the interaction with CD4 and CCR5.


2006 ◽  
Vol 80 (24) ◽  
pp. 12095-12101 ◽  
Author(s):  
Jing Zhou ◽  
Chin Ho Chen ◽  
Christopher Aiken

ABSTRACT The compound 3-O-(3′,3′-dimethylsuccinyl)-betulinic acid (DSB) potently and specifically inhibits human immunodeficiency virus type 1 (HIV-1) replication by delaying the cleavage of the CA-SP1 junction in Gag, leading to impaired maturation of the viral core. In this study, we investigated HIV-1 resistance to DSB by analyzing HIV-1 mutants encoding a variety of individual amino acid substitutions in the CA-SP1 cleavage site. Three of the substitutions were lethal to HIV-1 replication owing to a deleterious effect on particle assembly. The remaining mutants exhibited a range of replication efficiencies; however, each mutant was capable of replicating in the presence of concentrations of DSB that effectively inhibited wild-type HIV-1. Mutations conferring resistance to DSB also led to impaired binding of the compound to immature HIV-1 virions and loss of DSB-mediated inhibition of cleavage of Gag. Surprisingly, two of the DSB-resistant mutants retained an intermediate ability to bind the compound, suggesting that binding of DSB to immature HIV-1 particles may not be sufficient for antiviral activity. Overall, our results indicate that Gag amino acids L363 and A364 are critical for inhibition of HIV-1 replication by DSB and suggest that these residues form key contacts with the drug in the context of the assembling HIV-1 particle. These results have implications for the design of and screening for novel inhibitors of HIV-1 maturation.


Sign in / Sign up

Export Citation Format

Share Document