scholarly journals Mapping of the CXCR4 Binding Site within Variable Region 3 of the Feline Immunodeficiency Virus Surface Glycoprotein

2008 ◽  
Vol 82 (18) ◽  
pp. 9134-9142 ◽  
Author(s):  
Magnus Sundstrom ◽  
Rebecca L. White ◽  
Aymeric de Parseval ◽  
K. Jagannadha Sastry ◽  
Garrett Morris ◽  
...  

ABSTRACT Feline immunodeficiency virus (FIV) shares with T-cell tropic strains of human immunodeficiency virus type 1 (HIV-1) the use of the chemokine receptor CXCR4 for cellular entry. In order to map the interaction of the FIV envelope surface unit (SU) with CXCR4, full-length FIV SU-Fc as well as constructs with deletions of extended loop L2, V3, V4, or V5 were produced in stable CHO cell lines. Binding studies were performed using these proteins on 3201 cells (CXCR4hi CD134−), with or without the CXCR4 inhibitor AMD3100. The findings established that SU binding to CXCR4 specifically requires the V3 region of SU. Synthetic peptides spanning the V3 region as well as a panel of monoclonal antibodies (MAbs) to SU were used to further map the site of CXCR4 interaction. Both the SU V3-specific antibodies and the full-length V3 peptide potently blocked binding of SU to CXCR4 and virus entry. By using a set of nested peptides overlapping a region of SU specifically recognized by CD134-dependent neutralizing V3 MAbs, we showed that the neutralizing epitope and the region required for CXCR4 binding are within the same contiguous nine-amino-acid sequence of V3. Site-directed mutagenesis was used to reveal that serine 393 and tryptophan 394 at the predicted tip of V3 are required to facilitate entry into the target cell via CXCR4. Although the amino acid sequences are not identical between FIV and HIV, the ability of FIV to bind and utilize both feline and human CXCR4 makes the feline model an attractive venue for development of broad-based entry antagonists.

PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10689 ◽  
Author(s):  
Qiong-Ying Hu ◽  
Elizabeth Fink ◽  
Yang Hong ◽  
Cathy Wang ◽  
Chris K. Grant ◽  
...  

2003 ◽  
Vol 10 (6) ◽  
pp. 1109-1116 ◽  
Author(s):  
Mauro Pistello ◽  
Donatella Matteucci ◽  
Simone Giannecchini ◽  
Francesca Bonci ◽  
Olimpia Sichi ◽  
...  

ABSTRACT Fresh isolates of lentiviruses are characterized by an outstanding resistance to antibody-mediated neutralization. By investigating the changes that occurred in a neutralization-sensitive tissue culture-adapted strain of feline immunodeficiency virus after it was reinoculated into cats, a previous study had identified two amino acid positions of the surface glycoprotein (residues 481 and 557) which govern broad neutralization resistance (BNR) in this virus. By extending the follow-up of six independently evolving in vivo variants of such virus for up to 92 months, we now show that the changes at the two BNR-governing positions not only were remarkably stereotyped but also became fixed in an ordered sequential fashion with the duration of in vivo infection. In one variant, the two positions were also seen to slowly alternate at determining BNR. Evidence that evolution at the BNR-governing positions was accompanied, and possibly driven, by changes in the antigenic makeup of the viral surface brought about by the mutations at such positions is also presented.


2004 ◽  
Vol 78 (5) ◽  
pp. 2597-2600 ◽  
Author(s):  
Aymeric de Parseval ◽  
Stephen V. Su ◽  
John H. Elder ◽  
Benhur Lee

ABSTRACT DC-SIGN, a specific C-type lectin expressed on dendritic cells, binds and transmits multiple strains of primate immunodeficiency viruses to susceptible cells. Here, we report that human DC-SIGN also captures feline immunodeficiency virus via high-affinity (1 nM), Ca2+-dependent, d-mannose-inhibited binding to the major envelope glycoprotein, gp95.


2001 ◽  
Vol 75 (10) ◽  
pp. 4584-4593 ◽  
Author(s):  
Mauro Bendinelli ◽  
Mauro Pistello ◽  
Daniela Del Mauro ◽  
Giancarlo Cammarota ◽  
Fabrizio Maggi ◽  
...  

ABSTRACT The broad resistance to antibody-mediated neutralization of lentiviruses recently isolated from infected hosts is a poorly understood feature which might contribute to the ability of these viruses to persist and to the failure of experimental vaccines to protect against virulent viruses. We studied the underlying molecular mechanisms by examining the evolution of a neutralization-sensitive, tissue culture-adapted strain of feline immunodeficiency virus upon reinoculation into specific-pathogen-free cats. Reversion to broad neutralization resistance was observed in seven of seven inoculated animals and, in individual hosts, started to develop between less than 4 and more than 15 months from infection. After comparison of the envelope sequences of the inoculum virus, of an additional 4 neutralization-sensitive in vitro variants, and of 14 ex vivo-derived variants (6 neutralization sensitive, 5 resistant, and 3 with intermediate phenotype), a Lys→Asn or →Glu change at position 481 in the V4 region of the surface glycoprotein appeared as a key player in the reversion. This conclusion was confirmed by mutagenesis of molecularly cloned virus. Analysis of viral quasispecies and biological clones showed that the intermediate phenotype was due to transient coexistence of neutralization-sensitive and -resistant variants. Since the amino acid position involved was the same in four of four recent revertants, it is suggested that the number of residues that control reversion to broad neutralization resistance in FIV might be very limited. Amino acid 481 was found to be changed only in one of three putative long-term revertants. These variants shared a Ser→Asn change at position 557 in region V5, which probably collaborated with other mutations in long-term maintenance of neutralization resistance, as suggested by the study of mutagenized virus.


2021 ◽  
Author(s):  
◽  
Samaneh Azari

<p>De novo peptide sequencing algorithms have been developed for peptide identification in proteomics from tandem mass spectra (MS/MS), which can be used to identify and discover novel peptides and proteins that do not have a database available. Despite improvements in MS instrumentation and de novo sequencing methods, a significant number of CID MS/MS spectra still remain unassigned with the current algorithms, often leading to low confidence of peptide assignments to the spectra. Moreover, current algorithms often fail to construct the completely matched sequences, and produce partial matches. Therefore, identification of full-length peptides remains challenging. Another major challenge is the existence of noise in MS/MS spectra which makes the data highly imbalanced. Also missing peaks, caused by incomplete MS fragmentation makes it more difficult to infer a full-length peptide sequence. In addition, the large search space of all possible amino acid sequences for each spectrum leads to a high false discovery rate. This thesis focuses on improving the performance of current methods by developing new algorithms corresponding to three steps of preprocessing, sequence optimisation and post-processing using machine learning for more comprehensive interrogation of MS/MS datasets. From the machine learning point of view, the three steps can be addressed by solving different tasks such as classification, optimisation, and symbolic regression. Since Evolutionary Algorithms (EAs), as effective global search techniques, have shown promising results in solving these problems, this thesis investigates the capability of EAs in improving the de novo peptide sequencing. In the preprocessing step, this thesis proposes an effective GP-based method for classification of signal and noise peaks in highly imbalanced MS/MS spectra with the purpose of having a positive influence on the reliability of the peptide identification. The results show that the proposed algorithm is the most stable classification method across various noise ratios, outperforming six other benchmark classification algorithms. The experimental results show a significant improvement in high confidence peptide assignments to MS/MS spectra when the data is preprocessed by the proposed GP method. Moreover, the first multi-objective GP approach for classification of peaks in MS/MS data, aiming at maximising the accuracy of the minority class (signal peaks) and the accuracy of the majority class (noise peaks) is also proposed in this thesis. The results show that the multi-objective GP method outperforms the single objective GP algorithm and a popular multi-objective approach in terms of retaining more signal peaks and removing more noise peaks. The multi-objective GP approach significantly improved the reliability of peptide identification. This thesis proposes a GA-based method to solve the complex optimisation task of de novo peptide sequencing, aiming at constructing full-length sequences. The proposed GA method benefits the GA capability of searching a large search space of potential amino acid sequences to find the most likely full-length sequence. The experimental results show that the proposed method outperforms the most commonly used de novo sequencing method at both amino acid level and peptide level. This thesis also proposes a novel method for re-scoring and re-ranking the peptide spectrum matches (PSMs) from the result of de novo peptide sequencing, aiming at minimising the false discovery rate as a post-processing approach. The proposed GP method evolves the computer programs to perform regression and classification simultaneously in order to generate an effective scoring function for finding the correct PSMs from many incorrect ones. The results show that the new GP-based PSM scoring function significantly improves the identification of full-length peptides when it is used to post-process the de novo sequencing results.</p>


2001 ◽  
Vol 75 (18) ◽  
pp. 8868-8873 ◽  
Author(s):  
Simone Giannecchini ◽  
Donatella Matteucci ◽  
Aldo Ferrari ◽  
Mauro Pistello ◽  
Mauro Bendinelli

ABSTRACT We previously reported that, upon reinoculation into cats, a neutralization-sensitive, tissue culture-adapted strain of feline immunodeficiency virus constantly reverted to the broad neutralization resistance typical of primary virus isolates and identified residue 481 in the V4 region of the surface glycoprotein as a key determinant of the reversion. Here, we found that well-characterized immune sera, obtained from cats in which such reversion had occurred, selected in tissue culture in favor of virus variants that also had a neutralization-resistant phenotype and had amino acid 481 changed, thus indicating that the host's humoral immune response is capable of driving the reversion in the absence of other intervening factors. In contrast, a second group of immune sera, elicited by a virus variant that had already reverted to neutralization resistance in independent cats, induced the emergence of escape mutants lacking broad neutralization resistance and neutralized fewer virus variants. It is proposed that the viral variants used to produce the two sets of sera may have generated different antibody repertoires.


Sign in / Sign up

Export Citation Format

Share Document