scholarly journals Neuronal Subtype Determines Herpes Simplex Virus 1 Latency-Associated-Transcript Promoter Activity during Latency

2018 ◽  
Vol 92 (13) ◽  
pp. e00430-18 ◽  
Author(s):  
Jorge Ruben Cabrera ◽  
Audra J. Charron ◽  
David A. Leib

ABSTRACTHerpes simplex virus (HSV) latency in neurons remains poorly understood, and the heterogeneity of the sensory nervous system complicates mechanistic studies. In this study, we used primary culture of adult trigeminal ganglion (TG) mouse neurons in microfluidic devices and anin vivomodel to examine the subtypes of sensory neurons involved in HSV latency. HSV-infected neurofilament heavy-positive (NefH+) neurons were more likely to express latency-associated transcripts (LATs) than infected neurofilament heavy-negative (NefH−) neurons. This differential expression of the LAT promoter correlated with differences in HSV-1 early infection that manifested as differences in the efficiency with which HSV particles reached the cell body following infection at the distal axon.In vivo, we further identified a specific subset of NefH+neurons which coexpressed calcitonin gene-related peptide α (NefH+CGRP+neurons) as the sensory neuron subpopulation with the highest LAT promoter activity following HSV-1 infection. Finally, an early-phase reactivation assay showed HSV-1 reactivating in NefH+CGRP+neurons, although other sensory neuron subpopulations were also involved. Together, these results show that sensory neurons expressing neurofilaments exhibit enhanced LAT promoter activity. We hypothesize that the reduced efficiency of HSV-1 invasion at an early phase of infection may promote efficient establishment of latency in NefH+neurons due to initiation of the antiviral state preceding arrival of the virus at the neuronal cell body. While the outcome of HSV-1 infection of neurons is determined by a broad variety of factorsin vivo, neuronal subtypes are likely to play differential roles in modulating the establishment of latent infection.IMPORTANCETwo pivotal properties of HSV-1 make it a successful pathogen. First, it infects neurons, which are immune privileged. Second, it establishes latency in these neurons. Together, these properties allow HSV to persist for the lifetime of its host. Neurons are diverse and highly organized cells, with specific anatomical, physiological, and molecular characteristics. Previous work has shown that establishment of latency by HSV-1 does not occur equally in all types of neurons. Our results show that the kinetics of HSV infection and the levels of latency-related gene expression differ in certain types of neurons. The neuronal subtype infected by HSV is therefore a critical determinant of the outcome of infection and latency.

2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


2012 ◽  
Vol 86 (16) ◽  
pp. 8592-8601 ◽  
Author(s):  
Charlotte Mahiet ◽  
Ayla Ergani ◽  
Nicolas Huot ◽  
Nicolas Alende ◽  
Ahmed Azough ◽  
...  

Herpes simplex virus 1 (HSV-1) is a human pathogen that leads to recurrent facial-oral lesions. Its 152-kb genome is organized in two covalently linked segments, each composed of a unique sequence flanked by inverted repeats. Replication of the HSV-1 genome produces concatemeric molecules in which homologous recombination events occur between the inverted repeats. This mechanism leads to four genome isomers (termed P, IS, IL, and ILS) that differ in the relative orientations of their unique fragments. Molecular combing analysis was performed on DNA extracted from viral particles and BSR, Vero, COS-7, and Neuro-2a cells infected with either strain SC16 or KOS of HSV-1, as well as from tissues of experimentally infected mice. Using fluorescence hybridization, isomers were repeatedly detected and distinguished and were accompanied by a large proportion of noncanonical forms (40%). In both cell and viral-particle extracts, the distributions of the four isomers were statistically equivalent, except for strain KOS grown in Vero and Neuro-2a cells, in which P and IS isomers were significantly overrepresented. In infected cell extracts, concatemeric molecules as long as 10 genome equivalents were detected, among which, strikingly, the isomer distributions were equivalent, suggesting that any such imbalance may occur during encapsidation.In vivo, for strain KOS-infected trigeminal ganglia, an unbalanced distribution distinct from the onein vitrowas observed, along with a considerable proportion of noncanonical assortment.


2003 ◽  
Vol 77 (5) ◽  
pp. 3307-3311 ◽  
Author(s):  
Sarah M. Richart ◽  
Scott A. Simpson ◽  
Claude Krummenacher ◽  
J. Charles Whitbeck ◽  
Lewis I. Pizer ◽  
...  

ABSTRACT Primary cultures of rat and mouse sensory neurons were used to study the entry of herpes simplex virus type 1 (HSV-1). Soluble, truncated nectin-1 but not HveA prevented viral entry. Antibodies against nectin-1 also blocked infection of rat neurons. These results indicate that nectin-1 is the primary receptor for HSV-1 infection of sensory neurons.


1995 ◽  
Vol 39 (4) ◽  
pp. 846-849 ◽  
Author(s):  
H Aoki ◽  
T Akaike ◽  
K Abe ◽  
M Kuroda ◽  
S Arai ◽  
...  

Oryzacystatin (OC) is the first-described cystatin originating from rice seed; it consists of two molecular species, OC-I and OC-II, which have antiviral action against poliovirus in vitro (H. Kondo, S. Ijiri, K. Abe, H. Maeda, and S. Arai, FEBS Lett. 299:48-50, 1992). In the experiments reported here, we investigated the effects of OC-I and OC-II on the replication of herpes simplex virus type 1 (HSV-1) in vitro and in vivo. HSV-1 was inoculated onto monolayers of monkey kidney epithelial cells (CV-1 cells) at a multiplicity of infection of 0.1 PFU per cell. After adsorption of the virus onto cells, the cultures were incubated in the presence of either OC-I or OC-II in the concentration range of 1.0 to 300 microM, and the supernatant virus yield was quantitated at 24 h. The effective concentration for 90% inhibition of HSV-1 was 14.8 microM, while a cytotoxic effect on CV-1 cells without infection of HSV-1 was not observed below 500 microM OC-I. Therefore, the apparent in vitro chemotherapeutic index was estimated to be more than 33. In the mouse model of HSV-1-induced keratitis and encephalopathy, topical administration of OC-I to the mouse cornea produced a significant decrease in virus production in the cornea (mean virus yields: 3.11 log10 PFU in the treated group and 4.37 log10 PFU in the control group) and significant improvement in survival rates (P = 0.01). The in vivo antiherpetic effect of OC-I was comparable to that of acyclovir, indicating that topical treatment of HSV-1 infection in humans with OC-I might be possible. Our data also suggest the importance of some thiol proteinases, which may be derived from either the host's cells or HSV-1, during the replication process of HSV-1.


2000 ◽  
Vol 191 (9) ◽  
pp. 1459-1466 ◽  
Author(s):  
Ting Liu ◽  
Kamal M. Khanna ◽  
XiaoPing Chen ◽  
David J. Fink ◽  
Robert L. Hendricks

Recurrent herpes simplex virus type 1 (HSV-1) disease usually results from reactivation of latent virus in sensory neurons and transmission to peripheral sites. Therefore, defining the mechanisms that maintain HSV-1 in a latent state in sensory neurons may provide new approaches to reducing susceptibility to recurrent herpetic disease. After primary HSV-1 corneal infection, CD8+ T cells infiltrate the trigeminal ganglia (TGs) of mice, and are retained in latently infected ganglia. Here we demonstrate that CD8+ T cells that are present in the TGs at the time of excision can maintain HSV-1 in a latent state in sensory neurons in ex vivo TG cultures. Latently infected neurons expressed viral genome and some expressed HSV-1 immediate early and early proteins, but did not produce HSV-1 late proteins or infectious virions. Addition of anti-CD8α monoclonal antibody 5 d after culture initiation induced HSV-1 reactivation, as demonstrated by production of viral late proteins and infectious virions. Thus, CD8+ T cells can prevent HSV-1 reactivation without destroying the infected neurons. We propose that when the intrinsic capacity of neurons to inhibit HSV-1 reactivation from latency is compromised, production of HSV-1 immediate early and early proteins might activate CD8+ T cells aborting virion production.


2020 ◽  
Vol 94 (16) ◽  
Author(s):  
Kati Tormanen ◽  
Shaohui Wang ◽  
Ujjaldeep Jaggi ◽  
Homayon Ghiasi

ABSTRACT The immune modulatory protein herpes virus entry mediator (HVEM) is one of several cellular receptors used by herpes simplex virus 1 (HSV-1) for cell entry. HVEM binds to HSV-1 glycoprotein D (gD) but is not necessary for HSV-1 replication in vitro or in vivo. Previously, we showed that although HSV-1 replication was similar in wild-type (WT) control and HVEM−/− mice, HSV-1 does not establish latency or reactivate effectively in mice lacking HVEM, suggesting that HVEM is important for these functions. It is not known whether HVEM immunomodulatory functions contribute to latency and reactivation or whether its binding to gD is necessary. We used HVEM−/− mice to establish three transgenic mouse lines that express either human WT HVEM or human or mouse HVEM with a point mutation that ablates its ability to bind to gD. Here, we show that HVEM immune function, not its ability to bind gD, is required for WT levels of latency and reactivation. We further show that HVEM binding to gD does not affect expression of the HVEM ligands BTLA, CD160, or LIGHT. Interestingly, our results suggest that binding of HVEM to gD may contribute to efficient upregulation of CD8α but not PD1, TIM-3, CTLA4, or interleukin 2 (IL-2). Together, our results establish that HVEM immune function, not binding to gD, mediates establishment of latency and reactivation. IMPORTANCE HSV-1 is a common cause of ocular infections worldwide and a significant cause of preventable blindness. Corneal scarring and blindness are consequences of the immune response induced by repeated reactivation events. Therefore, HSV-1 therapeutic approaches should focus on preventing latency and reactivation. Our data suggest that the immune function of HVEM plays an important role in the HSV-1 latency and reactivation cycle that is independent of HVEM binding to gD.


1998 ◽  
Vol 42 (7) ◽  
pp. 1629-1635 ◽  
Author(s):  
Jianmin Duan ◽  
Michel Liuzzi ◽  
William Paris ◽  
Michelle Lambert ◽  
Carol Lawetz ◽  
...  

ABSTRACT The present study reports the activity of BILD 1633 SE against acyclovir (ACV)-resistant herpes simplex virus (HSV) infections in athymic nude (nu/nu) mice. BILD 1633 SE is a novel peptidomimetic inhibitor of HSV ribonucleotide reductase (RR). In vitro, it is more potent than ACV against several strains of wild-type as well as ACV-resistant HSV mutants. Its in vivo activity was tested against cutaneous viral infections in athymic nude mice infected with the ACV-resistant isolates HSV type 1 (HSV-1) dlsptk and PAAr5, which contain mutations in the viral thymidine kinase gene and the polymerase gene, respectively. Following cutaneous infection of athymic nude mice, both HSV-1 dlsptk and PAAr5 induced significant, reproducible, and persistent cutaneous lesions that lasted for more than 2 weeks. A 10-day treatment regimen with ACV given topically four times a day as a 5% cream or orally at up to 5 mg/ml in drinking water was partially effective against HSV-1 PAAr5 infection with a reduction of the area under the concentration-time curve (AUC) of 34 to 48%. The effects of ACV against HSV-1 dlsptk infection were not significant when it was administered topically and were only marginal when it was given in drinking water. Treatment under identical conditions with 5% topical BILD 1633 SE significantly reduced the cutaneous lesions caused by both HSV-1 dlsptk and PAAr5 infections. The effect of BILD 1633 SE against HSV-1 PAAr5 infections was more prominent and was inoculum and dose dependent, with AUC reductions of 96 and 67% against infections with 106 and 107 PFU per inoculation site, respectively. BILD 1633 SE also significantly decreased the lesions caused by HSV-1dlsptk infection (28 to 51% AUC reduction). Combination therapy with topical BILD 1633 SE (5%) and ACV in drinking water (5 mg/ml) produced an antiviral effect against HSV-1 dlsptk and PAAr5 infections that was more than the sum of the effects of both drugs. This is the first report that a selective HSV RR subunit association inhibitor can be effective against ACV-resistant HSV infections in vivo.


2000 ◽  
Vol 74 (13) ◽  
pp. 5957-5967 ◽  
Author(s):  
William P. Halford ◽  
Priscilla A. Schaffer

ABSTRACT The reduced efficiency with which herpes simplex virus type 1 (HSV-1) mutants establish latent infections in vivo has been a fundamental obstacle in efforts to determine the roles of individual viral genes in HSV-1 reactivation. For example, in the absence of the “nonessential” viral immediate-early protein, ICP0, HSV-1 is severely impaired in its ability to (i) replicate at the site of inoculation and (ii) establish latency in neurons of the peripheral nervous system. The mouse ocular model of HSV latency was used in the present study to determine if the conditions of infection can be manipulated such that replication-impaired, ICP0-null mutants establish wild-type levels of latency, as measured by viral genome loads in latently infected trigeminal ganglia (TG). To this end, the effects of inoculum size and transient immunosuppression on the levels of acute replication in mouse eyes and of viral DNA in latently infected TG were examined. Following inoculation of mice with 2 × 103, 2 × 104, 2 × 105, or 2 × 106 PFU/eye, wild-type virus replicated in mouse eyes and established latency in TG with similar efficiencies at all four doses. In contrast, increasing the inoculum size of the ICP0-null mutants n212 and 7134 from 2 × 105 to 2 × 106PFU/eye significantly decreased the levels of infectious virus detected in the tear films of mice from days 4 to 9 postinfection. In an attempt to establish the biological basis for this finding, the effect of viral dose on the induction of the host proinflammatory response was examined. Quantitative reverse transcription-PCR demonstrated that increasing the inoculum of 7134 from 2 × 104 to 2 × 106 PFU/eye significantly increased the expression of proinflammatory (interleukin 6), cell adhesion (intercellular adhesion molecule 1), and phagocyte-associated (CD11b) genes in mouse eyes 24 h postinfection. Furthermore, transient immunosuppression of mice with cyclophosphamide, but not cyclosporin A, significantly enhanced both the levels of acute n212 and 7134 replication in the eye and the levels of mutant viral genomes present in latently infected TG in a dose-dependent manner. Thus, the results of this study demonstrate that acute replication in the eye and the number of ICP0-null mutant genomes in latently infected TG can be increased to wild-type levels for both n212 and 7134 by (i) optimization of inoculum size and (ii) transient immunosuppression with cyclophosphamide.


2009 ◽  
Vol 84 (1) ◽  
pp. 153-162 ◽  
Author(s):  
Takahiko Imai ◽  
Ken Sagou ◽  
Jun Arii ◽  
Yasushi Kawaguchi

ABSTRACT We recently reported that the herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) (A. Kato, J. Arii, I. Shiratori, H. Akashi, H. Arase, and Y. Kawaguchi, J. Virol. 83:250-261, 2009; T. Wisner, C. C. Wright, A. Kato, Y. Kawaguchi, F. Mou, J. D. Baines, R. J. Roller and D. C. Johnson, J. Virol. 83:3115-3126, 2009). In the studies reported here, we examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo and present data showing that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis and periocular skin disease in mice. The same effects have been reported for mice infected with a recombinant HSV-1 carrying a kinase-inactive mutant of Us3. These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically reacted with phosphorylated gB Thr-887 and used this antibody to show that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly on the cell surface of infected cells.


2002 ◽  
Vol 76 (22) ◽  
pp. 11541-11550 ◽  
Author(s):  
Bruno Sainz ◽  
William P. Halford

ABSTRACT In vivo evidence suggests that T-cell-derived gamma interferon (IFN-γ) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-γ is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-γ synergizes with the innate IFNs (IFN-α and -β) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-β or IFN-γ inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-β and IFN-γ inhibits HSV-1 replication by ∼1,000-fold. Treatment with IFN-β and IFN-γ does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-β and IFN-γ to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-β and IFN-γ inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-β and IFN-γ reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by ∼200-fold. Thus, simultaneous activation of IFN-α/β receptors and IFN-γ receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-α or IFN-β is produced by most cells as an innate response to virus infection, the results imply that IFN-γ secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.


Sign in / Sign up

Export Citation Format

Share Document