neuronal subtype
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 41)

H-INDEX

26
(FIVE YEARS 2)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Ayana Sawai ◽  
Sarah Pfennig ◽  
Milica Bulajić ◽  
Alexander Miller ◽  
Alireza Khodadadi-Jamayran ◽  
...  

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally-restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.


Cell Reports ◽  
2022 ◽  
Vol 38 (1) ◽  
pp. 110191
Author(s):  
Emma R. West ◽  
Sylvain W. Lapan ◽  
ChangHee Lee ◽  
Kathrin M. Kajderowicz ◽  
Xihao Li ◽  
...  

PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001450
Author(s):  
Andreas Sagner ◽  
Isabel Zhang ◽  
Thomas Watson ◽  
Jorge Lazaro ◽  
Manuela Melchionda ◽  
...  

The molecular mechanisms that produce the full array of neuronal subtypes in the vertebrate nervous system are incompletely understood. Here, we provide evidence of a global temporal patterning program comprising sets of transcription factors that stratifies neurons based on the developmental time at which they are generated. This transcriptional code acts throughout the central nervous system, in parallel to spatial patterning, thereby increasing the diversity of neurons generated along the neuraxis. We further demonstrate that this temporal program operates in stem cell−derived neurons and is under the control of the TGFβ signaling pathway. Targeted perturbation of components of the temporal program, Nfia and Nfib, reveals their functional requirement for the generation of late-born neuronal subtypes. Together, our results provide evidence for the existence of a previously unappreciated global temporal transcriptional program of neuronal subtype identity and suggest that the integration of spatial and temporal patterning mechanisms diversifies and organizes neuronal subtypes in the vertebrate nervous system.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Ying Wang ◽  
Xi Chen ◽  
Yuanyuan Wang ◽  
Song Li ◽  
Huaibin Cai ◽  
...  

AbstractPituitary homeobox 3 (Pitx3) is required for the terminal differentiation of nigrostriatal dopaminergic neurons during neuronal development. However, whether Pitx3 contributes to the normal physiological function and cell-type identity of adult neurons remains unknown. To explore the role of Pitx3 in maintaining mature neurons, we selectively deleted Pitx3 in the mesodiencephalic dopaminergic (mdDA) neurons of Pitx3fl/fl/DATCreERT2 bigenic mice using a tamoxifen inducible CreERT2/loxp gene-targeting system. Pitx3fl/fl/DATCreERT2 mice developed age-dependent progressive motor deficits, concomitant with a rapid reduction of striatal dopamine (DA) content and a profound loss of mdDA neurons in the substantia nigra pars compacta (SNc) but not in the adjacent ventral tegmental area (VTA), recapitulating the canonical neuropathological features of Parkinson’s disease (PD). Mechanistic studies showed that Pitx3-deficiency significantly increased the number of cleaved caspase-3+ cells in SNc, which likely underwent neurodegeneration. Meanwhile, the vulnerability of SNc mdDA neurons was increased in Pitx3fl/fl/DATCreERT2 mice, as indicated by an early decline in glial cell line-derived neurotrophic factor (GDNF) and aldehyde dehydrogenase 1a1 (Aldh1a1) levels. Noticeably, somatic accumulation of α-synuclein (α-syn) was also significantly increased in the Pitx3-deficient neurons. Together, our data demonstrate that the loss of Pitx3 in fully differentiated mdDA neurons results in progressive neurodegeneration, indicating the importance of the Pitx3 gene in adult neuronal survival. Our findings also suggest that distinct Pitx3-dependent pathways exist in SNc and VTA mdDA neurons, correlating with the differential vulnerability of SNc and VTA mdDA neurons in the absence of Pitx3.


2021 ◽  
Author(s):  
Philip McGoldrick ◽  
Agnes Lau ◽  
Zhipeng You ◽  
Thomas M Durcan ◽  
Janice Robertson

Repeat expansions in C9orf72 cause Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) eliciting toxic effects through generation of RNA foci, dipeptide repeat proteins and/or loss of C9orf72 protein. Defects in nucleocytoplasmic transport (NCT) have been implicated as a pathogenic mechanism underlying repeat expansion toxicity. Here, we show that loss of C9orf72 causes neuronal specific phenotypes, disrupting the Ran-GTPase gradient both in vitro and in vivo. We describe compositionally different types of cytoplasmic Importin β-1 granules that exhibit neuronal subtype-specific properties in vivo. We show that the abundance of Importin β-1 granules is increased in the context of C9orf72 deficiency, disrupting interactions with nuclear pore complex proteins. These granules appear to bud from the nuclear envelope and are co-immunoreactive for G3BP1 and K63-ubiquitin. These findings link loss of C9orf72 protein to gain-of-function mechanisms and defects in NCT.


Author(s):  
Samuel K. Powell ◽  
Callan O’Shea ◽  
Kayla Townsley ◽  
Iya Prytkova ◽  
Kristina Dobrindt ◽  
...  

2021 ◽  
Author(s):  
Jeremy Dasen ◽  
Ayana Sawai ◽  
Sarah Pfennig ◽  
Milica Bulajić ◽  
Alexander Miller ◽  
...  

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We unexpectedly found that PRC2 is dispensable to preserve the morphogen-induced positional fates of spinal motor neurons (MNs), while PRC1 is essential for the specification of segmentally-restricted subtypes. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox networks by derepressed caudal Hox genes. These results indicate that PRC1 can function independently of de novo PRC2-dependent histone methylation to maintain chromatin topology and transcriptional memory at the time of neuronal differentiation.


2021 ◽  
Author(s):  
Dermot Harnett ◽  
Mateusz C. Ambrozkiewicz ◽  
Ulrike Zinnall ◽  
Ekaterina Borisova ◽  
Alexandra Rusanova ◽  
...  

Translation modulates the timing and amplification of gene expression after transcription. Development of the brain's neocortex requires precisely timed and spatially targeted gene expression, but the relationship between mRNA vs. protein synthesis throughout the genome is unknown. We perform a comprehensive analysis of the reactants, synthesis, and products of mRNA translation spanning mouse neocortex neurogenesis. Ribosome number in the cortical plate decreases sharply at mid-neurogenesis during a transition in neuronal subtype specification, shifting the fundamental kinetics of protein synthesis, with mRNA and protein levels frequently divergent. Satb2, which drives an essential neuronal subtype-specific program, is a highly dynamically translated mRNA with surprisingly broad transcription across diverse neuronal lineages. Satb2 protein achieves its neuronal subtype expression through timed regulation by the RNA-binding protein Pumilio2. Thus, the refinement of transcriptional programs by protein synthesis is a widespread feature of neuronal specification. Developmental neocortex translatome data are provided in an open-source resource: https://shiny.mdc-berlin.de/cortexomics/.


2021 ◽  
Vol 15 ◽  
Author(s):  
Brian A. Upton ◽  
Shane P. D’Souza ◽  
Richard A. Lang

The preoptic area of the hypothalamus is a homeostatic control center. The heterogeneous neurons in this nucleus function to regulate the sleep/wake cycle, reproduction, thirst and hydration, as well as thermogenesis and other metabolic responses. Several recent studies have analyzed preoptic neuronal populations and demonstrated neuronal subtype-specific roles in suppression of thermogenesis. These studies showed similar thermogenesis responses to chemogenetic modulation, and similar synaptic tracing patterns for neurons that were responsive to cold, to inflammatory stimuli, and to violet light. A reanalysis of single-cell/nucleus RNA-sequencing datasets of the preoptic nucleus indicate that these studies have converged on a common neuronal population that when activated, are sufficient to suppress thermogenesis. Expanding on a previous name for these neurons (Q neurons, which reflect their ability to promote quiescence and expression of Qrfp), we propose a new name: QPLOT neurons, to reflect numerous molecular markers of this population and to capture its broader roles in metabolic regulation. Here, we summarize previous findings on this population and present a unified description of QPLOT neurons, the excitatory preoptic neuronal population that integrate a variety of thermal, metabolic, hormonal and environmental stimuli in order to regulate metabolism and thermogenesis.


Sign in / Sign up

Export Citation Format

Share Document