scholarly journals RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production

2014 ◽  
Vol 88 (14) ◽  
pp. 7987-7997 ◽  
Author(s):  
Jun Feng ◽  
Paul D. De Jesus ◽  
Victoria Su ◽  
Stephanie Han ◽  
Danyang Gong ◽  
...  

ABSTRACTDetection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3.IMPORTANCEThe innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection.

2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Wang ◽  
Ting Ling ◽  
Ni Zhong ◽  
Liang-Guo Xu

Mitochondrial antiviral signaling protein (MAVS), an adaptor protein, is activated by RIG-I, which is critical for an effective innate immune response to infection by various RNA viruses. Viral infection causes the RIG-I-like receptor (RLR) to recognize pathogen-derived dsRNA and then becomes activated to promote prion-like aggregation and activation of MAVS. Subsequently, through the recruitment of TRAF proteins, MAVS activates two signaling pathways mediated by TBK1-IRF3 and IKK- NF-κb, respectively, and turns on type I interferon and proinflammatory cytokines. This study discovered that NEDD4 binding protein 3 (N4BP3) is a positive regulator of the RLR signaling pathway by targeting MAVS. Overexpression of N4BP3 promoted virus-induced activation of the interferon-β (IFN-β) promoter and interferon-stimulated response element (ISRE). Further experiments showed that knockdown or knockout N4BP3 impaired RIG-I-like receptor (RLR)-mediated innate immune response, induction of downstream antiviral genes, and cellular antiviral responses. We also detected that N4BP3 could accelerate the interaction between MAVS and TRAF2. Related experiments revealed that N4BP3 could facilitate the ubiquitination modification of MAVS. These findings suggest that N4BP3 is a critical component of the RIG-I-like receptor (RLR)-mediated innate immune response by targeting MAVS, which also provided insight into the mechanisms of innate antiviral responses.


2005 ◽  
Vol 42 (8) ◽  
pp. 869-877 ◽  
Author(s):  
Peter L Smith ◽  
Giovanna Lombardi ◽  
Graham R Foster

2009 ◽  
Vol 200 (10) ◽  
pp. 1548-1555 ◽  
Author(s):  
Farah M. Barakat ◽  
Vincent McDonald ◽  
Graham R. Foster ◽  
Michael G. Tovey ◽  
Daniel S. Korbel

2019 ◽  
Vol 20 (2) ◽  
pp. 243-243 ◽  
Author(s):  
Roni Winkler ◽  
Ella Gillis ◽  
Lior Lasman ◽  
Modi Safra ◽  
Shay Geula ◽  
...  

2018 ◽  
Vol 20 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Roni Winkler ◽  
Ella Gillis ◽  
Lior Lasman ◽  
Modi Safra ◽  
Shay Geula ◽  
...  

2016 ◽  
Vol 114 (1) ◽  
pp. E95-E104 ◽  
Author(s):  
Eugene Drokhlyansky ◽  
Didem Göz Aytürk ◽  
Timothy K. Soh ◽  
Ryan Chrenek ◽  
Elaine O’Loughlin ◽  
...  

The brain has a tightly regulated environment that protects neurons and limits inflammation, designated “immune privilege.” However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate–putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.


2016 ◽  
Vol 36 (7) ◽  
pp. 1136-1151 ◽  
Author(s):  
Soonhwa Song ◽  
Jae-Jin Lee ◽  
Hee-Jung Kim ◽  
Jeong Yoon Lee ◽  
Jun Chang ◽  
...  

This study is designed to examine the cellular functions of human Fas-associated factor 1 (FAF1) containing multiple ubiquitin-related domains. Microarray analyses revealed that interferon-stimulated genes related to the antiviral response are significantly increased in FAF1-knockdown HeLa cells. Silencing FAF1 enhanced the poly(I·C)- and respiratory syncytial virus (RSV)-induced production of type I interferons (IFNs), the target genes of interferon regulator factor 3 (IRF3). IRF3 is a key transcription factor in IFN-β signaling responsible for the host innate immune response. This study also found that FAF1 and IRF3 physically associate with IPO5/importin-β3 and that overexpression of FAF1 reduces the interaction between IRF3 and IPO5/importin-β3. These findings suggest that FAF1 negatively regulates IRF3-mediated IFN-β production and the antiviral innate immune response by regulating nuclear translocation of IRF3. We conclude that FAF1 plays a novel role in negatively regulating virus-induced IFN-β production and the antiviral response by inhibiting the translocation of active, phosphorylated IRF3 from the cytosol to the nucleus.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Jing Ye ◽  
Zheng Chen ◽  
Yunchuan Li ◽  
Zikai Zhao ◽  
Wen He ◽  
...  

ABSTRACT The type I interferon (IFN) response is part of the first-line defense against viral infection. To initiate replication, viruses have developed powerful evasion strategies to counteract host IFN responses. In the present study, we found that the Japanese encephalitis virus (JEV) NS5 protein could inhibit double-stranded RNA (dsRNA)-induced IFN-β expression in a dose-dependent manner. Our data further demonstrated that JEV NS5 suppressed the activation of the IFN transcriptional factors IFN regulatory factor 3 (IRF3) and NF-κB. However, there was no defect in the phosphorylation of IRF3 and degradation of IκB, an upstream inhibitor of NF-κB, upon NS5 expression, indicating a direct inhibition of the nuclear localization of IRF3 and NF-κB by NS5. Mechanistically, NS5 was shown to interact with the nuclear transport proteins KPNA2, KPNA3, and KPNA4, which competitively blocked the interaction of KPNA3 and KPNA4 with their cargo molecules, IRF3 and p65, a subunit of NF-κB, and thus inhibited the nuclear translocation of IRF3 and NF-κB. Furthermore, overexpression of KPNA3 and KPNA4 restored the activity of IRF3 and NF-κB and increased the production of IFN-β in NS5-expressing or JEV-infected cells. Additionally, an upregulated replication level of JEV was shown upon KPNA3 or KPNA4 overexpression. These results suggest that JEV NS5 inhibits the induction of type I IFN by targeting KPNA3 and KPNA4. IMPORTANCE JEV is the major cause of viral encephalitis in South and Southeast Asia, with high mortality. However, the molecular mechanisms contributing to the severe pathogenesis are poorly understood. The ability of JEV to counteract the host innate immune response is potentially one of the mechanisms responsible for JEV virulence. Here we demonstrate the ability of JEV NS5 to interfere with the dsRNA-induced nuclear translocation of IRF3 and NF-κB by competitively inhibiting the interaction of IRF3 and NF-κB with nuclear transport proteins. Via this mechanism, JEV NS5 suppresses the induction of type I IFN and the antiviral response in host cells. These findings reveal a novel strategy for JEV to escape the host innate immune response and provide new insights into the pathogenesis of JEV.


Sign in / Sign up

Export Citation Format

Share Document