mitochondrial antiviral signaling protein
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 22)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yuxia Lin ◽  
Changbai Huang ◽  
Huixin Gao ◽  
Xiaobo Li ◽  
Quanshi Lin ◽  
...  

Apoptosis is an important cellular response to viral infection. In current study, we identified activating molecule in Beclin1-regulated autophagy protein 1 (AMBRA1) as a positive regulator of apoptosis triggered by dsRNA. Depletion of AMBRA1 by gene editing significantly reduced dsRNA-induced apoptosis, which was largely restored by trans-complementation of AMBRA1. Mechanistically, AMBRA1 interacts with mitochondrial antiviral-signaling protein (MAVS), a key mitochondrial adaptor in the apoptosis pathway induced by dsRNA and viral infection. Further Co-IP analysis demonstrated that the mitochondrial localization of MAVS was essential for their interaction. The impact of AMBRA1 on dsRNA-induced apoptosis relied on the presence of MAVS and caspase-8. AMBRA1 was involved in the stabilization of MAVS through preventing its proteasomal degradation induced by dsRNA. Consistently, AMBRA1 upregulated the apoptosis induced by Semliki Forest virus infection. Taken together, our work illustrated a role of AMBRA1 in the virus-induced apoptosis through interacting with and stabilizing MAVS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Wang ◽  
Ting Ling ◽  
Ni Zhong ◽  
Liang-Guo Xu

Mitochondrial antiviral signaling protein (MAVS), an adaptor protein, is activated by RIG-I, which is critical for an effective innate immune response to infection by various RNA viruses. Viral infection causes the RIG-I-like receptor (RLR) to recognize pathogen-derived dsRNA and then becomes activated to promote prion-like aggregation and activation of MAVS. Subsequently, through the recruitment of TRAF proteins, MAVS activates two signaling pathways mediated by TBK1-IRF3 and IKK- NF-κb, respectively, and turns on type I interferon and proinflammatory cytokines. This study discovered that NEDD4 binding protein 3 (N4BP3) is a positive regulator of the RLR signaling pathway by targeting MAVS. Overexpression of N4BP3 promoted virus-induced activation of the interferon-β (IFN-β) promoter and interferon-stimulated response element (ISRE). Further experiments showed that knockdown or knockout N4BP3 impaired RIG-I-like receptor (RLR)-mediated innate immune response, induction of downstream antiviral genes, and cellular antiviral responses. We also detected that N4BP3 could accelerate the interaction between MAVS and TRAF2. Related experiments revealed that N4BP3 could facilitate the ubiquitination modification of MAVS. These findings suggest that N4BP3 is a critical component of the RIG-I-like receptor (RLR)-mediated innate immune response by targeting MAVS, which also provided insight into the mechanisms of innate antiviral responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunqiang Chen ◽  
Yuheng Shi ◽  
Jing Wu ◽  
Nan Qi

Mitochondrial antiviral signaling protein (MAVS) functions as a “switch” in the immune signal transduction against most RNA viruses. Upon viral infection, MAVS forms prion-like aggregates by receiving the cytosolic RNA sensor retinoic acid-inducible gene I-activated signaling and further activates/switches on the type I interferon signaling. While under resting state, MAVS is prevented from spontaneously aggregating to switch off the signal transduction and maintain immune homeostasis. Due to the dual role in antiviral signal transduction and immune homeostasis, MAVS has emerged as the central regulation target by both viruses and hosts. Recently, researchers show increasing interest in viral evasion strategies and immune homeostasis regulations targeting MAVS, especially focusing on the post-translational modifications of MAVS, such as ubiquitination and phosphorylation. This review summarizes the regulations of MAVS in antiviral innate immune signaling transduction and immune homeostasis maintenance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Duo-Meng Yang ◽  
Ting-Ting Geng ◽  
Andrew G. Harrison ◽  
Peng-Hua Wang

AbstractRetinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) sense viral RNA and activate antiviral immune responses. Herein we investigate their functions in human epithelial cells, the primary and initial target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A deficiency in MDA5, RIG-I or mitochondrial antiviral signaling protein (MAVS) enhanced viral replication. The expression of the type I/III interferon (IFN) during infection was impaired in MDA5−/− and MAVS−/−, but not in RIG-I−/−, when compared to wild type (WT) cells. The mRNA level of full-length angiotensin-converting enzyme 2 (ACE2), the cellular entry receptor for SARS-CoV-2, was ~ 2.5-fold higher in RIG-I−/− than WT cells. These data demonstrate MDA5 as the predominant SARS-CoV-2 sensor, IFN-independent induction of ACE2 and anti-SARS-CoV-2 role of RIG-I in epithelial cells.


2021 ◽  
pp. 1-21
Author(s):  
Christiane Binot ◽  
Jean-François Sadoc ◽  
Claude-Henri Chouard

We highlight changes to cell signaling under virus invasion (with the example of SARS-CoV-2), involving disturbance of membranes (plasma, mitochondrial, endothelial-alveolar) and of nanodomains, modulated by the cytoskeleton. Virus alters the mechanical properties of the membranes, impairing mesophase structures mediated by the fractal architecture initiated by actomyosin. It changes the topology of the membrane and its lipid composition distribution. Mechano-transduction, self-organization and topology far from equilibrium are omnipresent. We propose that the actomyosin contractility generates the cytoskeletons fractal organization. We focus on three membranar processus: The transition from lamellar configuration in cell and viral membranes to a bi-continuous organization in the presence of ethanolamine. (The energy for this transition is provided by change of the folding of the viral fusion protein from metastable to stable state). The action of mitochondrial antiviral signaling protein on the external mitochondrial envelope in contact with mitochondrial-associated membranes, modified by viral endoribonuclease, distorting innate immune response. The increased permeability of the epithelial-alveolar-pulmonary barrier involves the cytoskeleton membranes. The pulmonary surfactant is also perturbed in its liquid crystal state. Viral subversion disorganizes membrane structure and functions and thus the metabolism of the cell. We advocate systematic multidisciplinary exploration of membrane mesophases and their links with fractal dynamics, to enable novel therapies for SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Changbo Qu ◽  
Yang Li ◽  
Yunlong Li ◽  
Yihang Pan

Abstract Hepatitis E virus (HEV) infection is the leading cause of acute hepatitis worldwide. Mitochondrial antiviral signaling protein (MAVS)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. However, little is known about the effects of overexpression of MAVS on HEV infection. Here, we studied the effects of FL-MAVS on HEV. We found that overexpression of FL-MAVS profoundly inhibited HEV replication. The overexpression of FL-MAVS is accompanied by the secretion of functional IFNs and transcriptional induction of interferon stimulated genes (ISGs). Furthermore, we showed that the anti-HEV effect of FL-MAVS is largely dependent of the JAK signaling activation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Stuart Sims ◽  
Kevin Michaelsen ◽  
Sara Burkhard ◽  
Cornel Fraefel

The 5′ untranslated region (5′ UTR) of rodent hepacivirus (RHV) and pegivirus (RPgV) contains sequence homology to the HCV type III internal ribosome entry sites (IRES). Utilizing a monocistronic expression vector with an RNA polymerase I promoter to drive transcription, we show cell-specific IRES translation and regions within the IRES required for full functionality. Focusing on RHV, we further pseudotyped lentivirus with RHV and showed cell surface expression of the envelope proteins and transduction of murine hepatocytes and we then constructed full-length RHV and RPgV replicons with reporter genes. Using the replicon system, we show that the RHV NS3-4A protease cleaves a mitochondrial antiviral signaling protein reporter. However, liver-derived cells did not readily support the complete viral life cycle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Indra Sarabia ◽  
Camille L. Novis ◽  
Amanda B. Macedo ◽  
Hiroshi Takata ◽  
Racheal Nell ◽  
...  

The mitochondrial antiviral signaling protein (MAVS) is part of the cell’s innate immune mechanism of defense. MAVS mRNA is bicistronic and can give rise to a full length-MAVS and a shorter isoform termed miniMAVS. In response to viral infections, viral RNA can be sensed by the cytosolic RNA sensors retinoic acid-inducible gene I (RIG-I) and/or melanoma differentiation-associated protein 5 (MDA5) and activate NF-κB through interaction with MAVS. MAVS can also sense cellular stress and activate an anti-oxidative stress (AOS) response through the activation of NF-κB. Because NF-κB is a main cellular transcription factor for HIV-1, we wanted to address what role MAVS plays in HIV-1 reactivation from latency in CD4 T cells. Our results indicate that RIG-I agonists required full length-MAVS whereas the AOS response induced by Dynasore through its catechol group can reactivate latent HIV-1 in a MAVS dependent manner through miniMAVS isoform. Furthermore, we uncover that PKC agonists, a class of latency-reversing agents, induce an AOS response in CD4 T cells and require miniMAVS to fully reactivate latent HIV-1. Our results indicate that the AOS response, through miniMAVS, can induce HIV-1 transcription in response to cellular stress and targeting this pathway adds to the repertoire of approaches to reactivate latent HIV-1 in ‘shock-and-kill’ strategies.


2021 ◽  
Vol 4 (7) ◽  
pp. e202000915
Author(s):  
Onruedee Khantisitthiporn ◽  
Byron Shue ◽  
Nicholas S Eyre ◽  
Colt W Nash ◽  
Lynne Turnbull ◽  
...  

Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin. Viperin colocalized with numerous peroxisomal proteins and its interaction with Pex19 was in close association with lipid droplets, another emerging innate signaling platform. Augmentation of the RLR pathway by viperin was lost when Pex19 expression was reduced. Expression of organelle-specific MAVS demonstrated that viperin requires both mitochondria and peroxisome MAVS for optimal induction of IFN-β. These results suggest that viperin is required to enhance the antiviral cellular response with a possible role to position the peroxisome at the mitochondrial/MAM MAVS signaling synapse, furthering our understanding of the importance of multiple organelles driving the innate immune response against viral infection.


Sign in / Sign up

Export Citation Format

Share Document